{"title":"最佳近似量子编译问题","authors":"Liam Madden, Andrea Simonetto","doi":"10.1145/3505181","DOIUrl":null,"url":null,"abstract":"We study the problem of finding the best approximate circuit that is the closest (in some pertinent metric) to a target circuit, and which satisfies a number of hardware constraints, like gate alphabet and connectivity. We look at the problem in the CNOT+rotation gate set from a mathematical programming standpoint, offering contributions both in terms of understanding the mathematics of the problem and its efficient solution. Among the results that we present, we are able to derive a 14-CNOT 4-qubit Toffoli decomposition from scratch, and show that the Quantum Shannon Decomposition can be compressed by a factor of two without practical loss of fidelity.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Best Approximate Quantum Compiling Problems\",\"authors\":\"Liam Madden, Andrea Simonetto\",\"doi\":\"10.1145/3505181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of finding the best approximate circuit that is the closest (in some pertinent metric) to a target circuit, and which satisfies a number of hardware constraints, like gate alphabet and connectivity. We look at the problem in the CNOT+rotation gate set from a mathematical programming standpoint, offering contributions both in terms of understanding the mathematics of the problem and its efficient solution. Among the results that we present, we are able to derive a 14-CNOT 4-qubit Toffoli decomposition from scratch, and show that the Quantum Shannon Decomposition can be compressed by a factor of two without practical loss of fidelity.\",\"PeriodicalId\":365166,\"journal\":{\"name\":\"ACM Transactions on Quantum Computing\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3505181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3505181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the problem of finding the best approximate circuit that is the closest (in some pertinent metric) to a target circuit, and which satisfies a number of hardware constraints, like gate alphabet and connectivity. We look at the problem in the CNOT+rotation gate set from a mathematical programming standpoint, offering contributions both in terms of understanding the mathematics of the problem and its efficient solution. Among the results that we present, we are able to derive a 14-CNOT 4-qubit Toffoli decomposition from scratch, and show that the Quantum Shannon Decomposition can be compressed by a factor of two without practical loss of fidelity.