{"title":"使用度量和聚类分析分析学习者在教育视频中的观看行为","authors":"A. Kleftodimos, Georgios Evangelidis","doi":"10.1109/AICCSA.2014.7073210","DOIUrl":null,"url":null,"abstract":"On line video is a powerful tool for e-learning and this is evident from a number of reports, research papers and university initiatives, which portray that online video is becoming an important medium for delivering educational content. Therefore, research that focuses on how students view educational videos becomes of particular interest and in previous work we argued that in order to efficiently analyze learner viewing behavior we should deploy tools that log the learner activity and assist usage analysis and data mining. Working towards this direction, a framework for recording and analyzing learner behavior was presented together with findings of applying the framework into educational settings. In this paper, we continue this work by presenting a set of metrics that can be derived from the framework and be used to measure learner engagement and video popularity. These metrics in conjunction with the data mining method of clustering are then used to gain insights into learner viewing behavior.","PeriodicalId":412749,"journal":{"name":"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using metrics and cluster analysis for analyzing learner video viewing behaviours in educational videos\",\"authors\":\"A. Kleftodimos, Georgios Evangelidis\",\"doi\":\"10.1109/AICCSA.2014.7073210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On line video is a powerful tool for e-learning and this is evident from a number of reports, research papers and university initiatives, which portray that online video is becoming an important medium for delivering educational content. Therefore, research that focuses on how students view educational videos becomes of particular interest and in previous work we argued that in order to efficiently analyze learner viewing behavior we should deploy tools that log the learner activity and assist usage analysis and data mining. Working towards this direction, a framework for recording and analyzing learner behavior was presented together with findings of applying the framework into educational settings. In this paper, we continue this work by presenting a set of metrics that can be derived from the framework and be used to measure learner engagement and video popularity. These metrics in conjunction with the data mining method of clustering are then used to gain insights into learner viewing behavior.\",\"PeriodicalId\":412749,\"journal\":{\"name\":\"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICCSA.2014.7073210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2014.7073210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using metrics and cluster analysis for analyzing learner video viewing behaviours in educational videos
On line video is a powerful tool for e-learning and this is evident from a number of reports, research papers and university initiatives, which portray that online video is becoming an important medium for delivering educational content. Therefore, research that focuses on how students view educational videos becomes of particular interest and in previous work we argued that in order to efficiently analyze learner viewing behavior we should deploy tools that log the learner activity and assist usage analysis and data mining. Working towards this direction, a framework for recording and analyzing learner behavior was presented together with findings of applying the framework into educational settings. In this paper, we continue this work by presenting a set of metrics that can be derived from the framework and be used to measure learner engagement and video popularity. These metrics in conjunction with the data mining method of clustering are then used to gain insights into learner viewing behavior.