脉冲周期激光作用制备Fe-Ni和Fe-Cr合金微粉末涂层

M. Khomyakov, P. Pinaev, Aleksandr Smirnov, P. Statsenko, G. N. Grachev
{"title":"脉冲周期激光作用制备Fe-Ni和Fe-Cr合金微粉末涂层","authors":"M. Khomyakov, P. Pinaev, Aleksandr Smirnov, P. Statsenko, G. N. Grachev","doi":"10.1117/12.2550426","DOIUrl":null,"url":null,"abstract":"This paper presents the results of experimental research concerning the laser-plasma coating of steel substrate with the following powder grades: AP-FeCr4MnSiB (Fe71.75C4.81Cr3.33Si3.54B14.10Mn1.74V0.73), AP-FeCr11Mn4SiB (Fe66.8Mn2.84C2.85Si5.3B11.42Cr10.79), AP-FeNi19Mn10SiB (Fe56.12Ni15.82C1.65Si4.92B12.82Mn8.66) and AP-G14 (Fe29.4Ni32.24C5.32Cr14.78Si4.06B10.22Mo2.8W1.16). As a focusing head was used self-made lateral nozzle for feeding powder. The nozzle was used in conjunction with scanning the laser radiation in the direction perpendicular to the movement of the focusing head. Coated tracks with various nozzle head movement speed (7-20 mm/s) was obtained. The elemental compositions of the resulting coatings were studied. Alloying elements are uniform distributed throughout the coating. During surfacing the powder particles are completely melted and partially mixed with the base material. This leads to increased iron content in the resulting coatings compared with the original powder. The hardness and thickness of the deposited layers were measured depending on the speed of the process. The hardness of the coatings is in the range of 7-12 GPa, the thickness is 0.15-0.7 mm. The wear resistance of the resulting coatings is up to 10 times higher than that of a steel substrate.","PeriodicalId":205170,"journal":{"name":"Atomic and Molecular Pulsed Lasers","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Obtaining of micro-powder coatings from Fe-Ni and Fe-Cr alloys by pulse-periodic laser action\",\"authors\":\"M. Khomyakov, P. Pinaev, Aleksandr Smirnov, P. Statsenko, G. N. Grachev\",\"doi\":\"10.1117/12.2550426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of experimental research concerning the laser-plasma coating of steel substrate with the following powder grades: AP-FeCr4MnSiB (Fe71.75C4.81Cr3.33Si3.54B14.10Mn1.74V0.73), AP-FeCr11Mn4SiB (Fe66.8Mn2.84C2.85Si5.3B11.42Cr10.79), AP-FeNi19Mn10SiB (Fe56.12Ni15.82C1.65Si4.92B12.82Mn8.66) and AP-G14 (Fe29.4Ni32.24C5.32Cr14.78Si4.06B10.22Mo2.8W1.16). As a focusing head was used self-made lateral nozzle for feeding powder. The nozzle was used in conjunction with scanning the laser radiation in the direction perpendicular to the movement of the focusing head. Coated tracks with various nozzle head movement speed (7-20 mm/s) was obtained. The elemental compositions of the resulting coatings were studied. Alloying elements are uniform distributed throughout the coating. During surfacing the powder particles are completely melted and partially mixed with the base material. This leads to increased iron content in the resulting coatings compared with the original powder. The hardness and thickness of the deposited layers were measured depending on the speed of the process. The hardness of the coatings is in the range of 7-12 GPa, the thickness is 0.15-0.7 mm. The wear resistance of the resulting coatings is up to 10 times higher than that of a steel substrate.\",\"PeriodicalId\":205170,\"journal\":{\"name\":\"Atomic and Molecular Pulsed Lasers\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic and Molecular Pulsed Lasers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2550426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic and Molecular Pulsed Lasers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2550426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了AP-FeCr4MnSiB (fe71.75 5c4.81 cr3.33 si3.54 b14.10 mn1.74 v0.73)、AP-FeCr11Mn4SiB (Fe66.8Mn2.84C2.85Si5.3B11.42Cr10.79)、AP-FeNi19Mn10SiB (fe56.12 ni15.82 2c1.65 si4.92 b12.82 mn8.66)和AP-G14 (Fe29.4Ni32.24C5.32Cr14.78Si4.06B10.22Mo2.8W1.16)粉末级激光等离子体涂层钢基体的实验研究结果。作为聚焦头,采用自制的侧向喷嘴供粉。该喷嘴与垂直于聚焦头运动方向的激光辐射扫描结合使用。获得了不同喷嘴头部运动速度(7 ~ 20 mm/s)的涂覆轨迹。研究了所得涂层的元素组成。合金元素均匀分布在整个涂层中。在堆焊过程中,粉末颗粒完全熔化并部分与基材混合。这导致与原始粉末相比,所得涂层中的铁含量增加。沉积层的硬度和厚度根据工艺的速度进行测量。涂层硬度为7- 12gpa,厚度为0.15-0.7 mm。所得涂层的耐磨性比钢基体高10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Obtaining of micro-powder coatings from Fe-Ni and Fe-Cr alloys by pulse-periodic laser action
This paper presents the results of experimental research concerning the laser-plasma coating of steel substrate with the following powder grades: AP-FeCr4MnSiB (Fe71.75C4.81Cr3.33Si3.54B14.10Mn1.74V0.73), AP-FeCr11Mn4SiB (Fe66.8Mn2.84C2.85Si5.3B11.42Cr10.79), AP-FeNi19Mn10SiB (Fe56.12Ni15.82C1.65Si4.92B12.82Mn8.66) and AP-G14 (Fe29.4Ni32.24C5.32Cr14.78Si4.06B10.22Mo2.8W1.16). As a focusing head was used self-made lateral nozzle for feeding powder. The nozzle was used in conjunction with scanning the laser radiation in the direction perpendicular to the movement of the focusing head. Coated tracks with various nozzle head movement speed (7-20 mm/s) was obtained. The elemental compositions of the resulting coatings were studied. Alloying elements are uniform distributed throughout the coating. During surfacing the powder particles are completely melted and partially mixed with the base material. This leads to increased iron content in the resulting coatings compared with the original powder. The hardness and thickness of the deposited layers were measured depending on the speed of the process. The hardness of the coatings is in the range of 7-12 GPa, the thickness is 0.15-0.7 mm. The wear resistance of the resulting coatings is up to 10 times higher than that of a steel substrate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信