{"title":"多协调机械臂运动与力的自适应控制方法","authors":"Yan-Ru Hu, A. Goldenberg","doi":"10.1109/ROBOT.1989.100126","DOIUrl":null,"url":null,"abstract":"An approach to motion and force control of multiple coordinated robot arms based on an adaptive scheme is developed. The adaptation law uses Popov hyperstability theory to estimate online the uncertain parameters of multiple robot arms and payload. The approach can be used to control the motion of an object held by the arms, the contact forces between the object and the environment, and the internal forces that do not contribute to the motion and the contact forces. Three subsystem error equations are generated, i.e. a position error subsystem, a contact force error subsystem, and an internal force error subsystem. The unknown parameters of the multiple coordinated robot arms and the object are estimated in terms of the three error subsystem equations. It is shown that the proposed adaptive control scheme improves the position and internal and contact force tracking accuracy of a class of systems with an uncertain knowledge of the dynamic model.<<ETX>>","PeriodicalId":114394,"journal":{"name":"Proceedings, 1989 International Conference on Robotics and Automation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":"{\"title\":\"An adaptive approach to motion and force control of multiple coordinated robot arms\",\"authors\":\"Yan-Ru Hu, A. Goldenberg\",\"doi\":\"10.1109/ROBOT.1989.100126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach to motion and force control of multiple coordinated robot arms based on an adaptive scheme is developed. The adaptation law uses Popov hyperstability theory to estimate online the uncertain parameters of multiple robot arms and payload. The approach can be used to control the motion of an object held by the arms, the contact forces between the object and the environment, and the internal forces that do not contribute to the motion and the contact forces. Three subsystem error equations are generated, i.e. a position error subsystem, a contact force error subsystem, and an internal force error subsystem. The unknown parameters of the multiple coordinated robot arms and the object are estimated in terms of the three error subsystem equations. It is shown that the proposed adaptive control scheme improves the position and internal and contact force tracking accuracy of a class of systems with an uncertain knowledge of the dynamic model.<<ETX>>\",\"PeriodicalId\":114394,\"journal\":{\"name\":\"Proceedings, 1989 International Conference on Robotics and Automation\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings, 1989 International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1989.100126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings, 1989 International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1989.100126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An adaptive approach to motion and force control of multiple coordinated robot arms
An approach to motion and force control of multiple coordinated robot arms based on an adaptive scheme is developed. The adaptation law uses Popov hyperstability theory to estimate online the uncertain parameters of multiple robot arms and payload. The approach can be used to control the motion of an object held by the arms, the contact forces between the object and the environment, and the internal forces that do not contribute to the motion and the contact forces. Three subsystem error equations are generated, i.e. a position error subsystem, a contact force error subsystem, and an internal force error subsystem. The unknown parameters of the multiple coordinated robot arms and the object are estimated in terms of the three error subsystem equations. It is shown that the proposed adaptive control scheme improves the position and internal and contact force tracking accuracy of a class of systems with an uncertain knowledge of the dynamic model.<>