住宅建筑可动能量的非侵入式预测模型

Luc Dufour, D. Genoud, A. Jara, J. Treboux, B. Ladevie, J. Bezian
{"title":"住宅建筑可动能量的非侵入式预测模型","authors":"Luc Dufour, D. Genoud, A. Jara, J. Treboux, B. Ladevie, J. Bezian","doi":"10.1109/WCNCW.2015.7122531","DOIUrl":null,"url":null,"abstract":"The building energy consumption represent 60% of total primary energy consumption in the world. In order to control the demand response schemes for residential users, it is crucial to be able to predict the different components of the total power consumption of a household. This work provide a non intrusive identification model of devices with a sample frequency of one hertz. The identification results are the inputs of a model to predict the flexible energy. This corresponds at the different devices could be shift in a predetermined time. In a residential building, the heating and the hot water represent this flexible energy. The Support Vector Machine (SVM) enable an identification around 95% of heating, hot water, household electrical and a ensemble of decision tree provide the prediction for the next 15 minutes.","PeriodicalId":123586,"journal":{"name":"2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A non-intrusive model to predict the exible energy in a residential building\",\"authors\":\"Luc Dufour, D. Genoud, A. Jara, J. Treboux, B. Ladevie, J. Bezian\",\"doi\":\"10.1109/WCNCW.2015.7122531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The building energy consumption represent 60% of total primary energy consumption in the world. In order to control the demand response schemes for residential users, it is crucial to be able to predict the different components of the total power consumption of a household. This work provide a non intrusive identification model of devices with a sample frequency of one hertz. The identification results are the inputs of a model to predict the flexible energy. This corresponds at the different devices could be shift in a predetermined time. In a residential building, the heating and the hot water represent this flexible energy. The Support Vector Machine (SVM) enable an identification around 95% of heating, hot water, household electrical and a ensemble of decision tree provide the prediction for the next 15 minutes.\",\"PeriodicalId\":123586,\"journal\":{\"name\":\"2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNCW.2015.7122531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2015.7122531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

建筑能耗占世界一次能源消耗总量的60%。为了控制住宅用户的需求响应方案,能够预测家庭总用电量的不同组成部分是至关重要的。本工作提供了一种采样频率为一赫兹的非侵入式设备识别模型。识别结果作为柔性能预测模型的输入。这对应于不同的设备可以在预定的时间内移动。在住宅建筑中,供暖和热水代表了这种灵活的能源。支持向量机(SVM)能够识别大约95%的供暖、热水、家用电器,决策树的集合提供了未来15分钟的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A non-intrusive model to predict the exible energy in a residential building
The building energy consumption represent 60% of total primary energy consumption in the world. In order to control the demand response schemes for residential users, it is crucial to be able to predict the different components of the total power consumption of a household. This work provide a non intrusive identification model of devices with a sample frequency of one hertz. The identification results are the inputs of a model to predict the flexible energy. This corresponds at the different devices could be shift in a predetermined time. In a residential building, the heating and the hot water represent this flexible energy. The Support Vector Machine (SVM) enable an identification around 95% of heating, hot water, household electrical and a ensemble of decision tree provide the prediction for the next 15 minutes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信