{"title":"智能电网的多米诺骨牌:相互依赖的网络架构中系统行为的实证研究","authors":"Xiang Lu, Wenye Wang, Jianfeng Ma, Limin Sun","doi":"10.1109/SmartGridComm.2013.6688026","DOIUrl":null,"url":null,"abstract":"The smart grid features a unique network architecture that consists of two coupled and interdependent networks, including the communication network and the power network. The communication network serves as the infrastructure of information disseminations to deliver control commands and device running states for the power network, whereas the power network supplies the energy to support the communication network. Nevertheless, besides such an reciprocal relationship, the two coupled networks also bring more threats of cascading failures to the smart grid against the system reliability, which will be more serious in the situation that communication devices are installed with back-up power supplies. In this paper, we present a detailed review of the system architecture of the smart grid and investigate the complicated evolution process of iterative failures' propagations between the coupled networks. Our analysis claim that there exists a potential domino affect to make original power faults be propagated in a wide area. To testify our analysis, we design and implement a co-simulation framework to integrate the communication network simulation with the power network simulation. Through experiments, we quantify two critical metrics to indicate the possibility of the potential fault spreading in the smart grid. Our work replays the complicated network behaviors implied in the coupled network architecture and provides preliminary statistical results towards a fine-grained mathematical model to describe the interesting phenomenon of iterative fault propagations.","PeriodicalId":136434,"journal":{"name":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Domino of the smart grid: An empirical study of system behaviors in the interdependent network architecture\",\"authors\":\"Xiang Lu, Wenye Wang, Jianfeng Ma, Limin Sun\",\"doi\":\"10.1109/SmartGridComm.2013.6688026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The smart grid features a unique network architecture that consists of two coupled and interdependent networks, including the communication network and the power network. The communication network serves as the infrastructure of information disseminations to deliver control commands and device running states for the power network, whereas the power network supplies the energy to support the communication network. Nevertheless, besides such an reciprocal relationship, the two coupled networks also bring more threats of cascading failures to the smart grid against the system reliability, which will be more serious in the situation that communication devices are installed with back-up power supplies. In this paper, we present a detailed review of the system architecture of the smart grid and investigate the complicated evolution process of iterative failures' propagations between the coupled networks. Our analysis claim that there exists a potential domino affect to make original power faults be propagated in a wide area. To testify our analysis, we design and implement a co-simulation framework to integrate the communication network simulation with the power network simulation. Through experiments, we quantify two critical metrics to indicate the possibility of the potential fault spreading in the smart grid. Our work replays the complicated network behaviors implied in the coupled network architecture and provides preliminary statistical results towards a fine-grained mathematical model to describe the interesting phenomenon of iterative fault propagations.\",\"PeriodicalId\":136434,\"journal\":{\"name\":\"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2013.6688026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2013.6688026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Domino of the smart grid: An empirical study of system behaviors in the interdependent network architecture
The smart grid features a unique network architecture that consists of two coupled and interdependent networks, including the communication network and the power network. The communication network serves as the infrastructure of information disseminations to deliver control commands and device running states for the power network, whereas the power network supplies the energy to support the communication network. Nevertheless, besides such an reciprocal relationship, the two coupled networks also bring more threats of cascading failures to the smart grid against the system reliability, which will be more serious in the situation that communication devices are installed with back-up power supplies. In this paper, we present a detailed review of the system architecture of the smart grid and investigate the complicated evolution process of iterative failures' propagations between the coupled networks. Our analysis claim that there exists a potential domino affect to make original power faults be propagated in a wide area. To testify our analysis, we design and implement a co-simulation framework to integrate the communication network simulation with the power network simulation. Through experiments, we quantify two critical metrics to indicate the possibility of the potential fault spreading in the smart grid. Our work replays the complicated network behaviors implied in the coupled network architecture and provides preliminary statistical results towards a fine-grained mathematical model to describe the interesting phenomenon of iterative fault propagations.