基于改进张量邻域保持嵌入的人脸识别

Feng Li
{"title":"基于改进张量邻域保持嵌入的人脸识别","authors":"Feng Li","doi":"10.1109/ISCID.2012.239","DOIUrl":null,"url":null,"abstract":"Tensor Neighborhood Preserving Embedding(TNPPE) is a efficient subspace dimensionality reduction model for face recognition. However, the singularity problems is still remained. in the paper, we propose an Improved Tensor Neighborhood Preserving Embedding (ITNPE) algorithm for face recognition. We evaluate the algorithm by applying it to YaleB and AR databases. the experiments demonstrate excellent performance of our algorithm for the dimensionality reduction in face recognition.","PeriodicalId":246432,"journal":{"name":"2012 Fifth International Symposium on Computational Intelligence and Design","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Face Recognition Based on Improved Tensor Neighborhood Preserving Embedding\",\"authors\":\"Feng Li\",\"doi\":\"10.1109/ISCID.2012.239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensor Neighborhood Preserving Embedding(TNPPE) is a efficient subspace dimensionality reduction model for face recognition. However, the singularity problems is still remained. in the paper, we propose an Improved Tensor Neighborhood Preserving Embedding (ITNPE) algorithm for face recognition. We evaluate the algorithm by applying it to YaleB and AR databases. the experiments demonstrate excellent performance of our algorithm for the dimensionality reduction in face recognition.\",\"PeriodicalId\":246432,\"journal\":{\"name\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2012.239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2012.239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

张量邻域保持嵌入(TNPPE)是一种有效的人脸识别子空间降维模型。然而,奇异性问题仍然存在。本文提出了一种改进的张量邻域保持嵌入(ITNPE)人脸识别算法。我们通过将其应用于YaleB和AR数据库来评估算法。实验证明了该算法在人脸识别中的降维效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Recognition Based on Improved Tensor Neighborhood Preserving Embedding
Tensor Neighborhood Preserving Embedding(TNPPE) is a efficient subspace dimensionality reduction model for face recognition. However, the singularity problems is still remained. in the paper, we propose an Improved Tensor Neighborhood Preserving Embedding (ITNPE) algorithm for face recognition. We evaluate the algorithm by applying it to YaleB and AR databases. the experiments demonstrate excellent performance of our algorithm for the dimensionality reduction in face recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信