构建网络规模的多媒体服务:以Spark为例

Gylfi Þór Guðmundsson, L. Amsaleg, B. Jónsson, M. Franklin
{"title":"构建网络规模的多媒体服务:以Spark为例","authors":"Gylfi Þór Guðmundsson, L. Amsaleg, B. Jónsson, M. Franklin","doi":"10.1145/3083187.3083200","DOIUrl":null,"url":null,"abstract":"Computing power has now become abundant with multi-core machines, grids and clouds, but it remains a challenge to harness the available power and move towards gracefully handling web-scale datasets. Several researchers have used automatically distributed computing frameworks, notably Hadoop and Spark, for processing multimedia material, but mostly using small collections on small clusters. In this paper, we describe the engineering process for a prototype of a (near) web-scale multimedia service using the Spark framework running on the AWS cloud service. We present experimental results using up to 43 billion SIFT feature vectors from the public YFCC 100M collection, making this the largest high-dimensional feature vector collection reported in the literature. The design of the prototype and performance results demonstrate both the flexibility and scalability of the Spark framework for implementing multimedia services.","PeriodicalId":123321,"journal":{"name":"Proceedings of the 8th ACM on Multimedia Systems Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Towards Engineering a Web-Scale Multimedia Service: A Case Study Using Spark\",\"authors\":\"Gylfi Þór Guðmundsson, L. Amsaleg, B. Jónsson, M. Franklin\",\"doi\":\"10.1145/3083187.3083200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing power has now become abundant with multi-core machines, grids and clouds, but it remains a challenge to harness the available power and move towards gracefully handling web-scale datasets. Several researchers have used automatically distributed computing frameworks, notably Hadoop and Spark, for processing multimedia material, but mostly using small collections on small clusters. In this paper, we describe the engineering process for a prototype of a (near) web-scale multimedia service using the Spark framework running on the AWS cloud service. We present experimental results using up to 43 billion SIFT feature vectors from the public YFCC 100M collection, making this the largest high-dimensional feature vector collection reported in the literature. The design of the prototype and performance results demonstrate both the flexibility and scalability of the Spark framework for implementing multimedia services.\",\"PeriodicalId\":123321,\"journal\":{\"name\":\"Proceedings of the 8th ACM on Multimedia Systems Conference\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM on Multimedia Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3083187.3083200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM on Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3083187.3083200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

如今,随着多核机器、网格和云的出现,计算能力已经变得非常强大,但如何利用现有的计算能力,优雅地处理网络规模的数据集,仍然是一个挑战。一些研究人员已经使用自动分布式计算框架,特别是Hadoop和Spark来处理多媒体材料,但主要是在小集群上使用小集合。在本文中,我们描述了一个(近)web规模多媒体服务原型的工程过程,该原型使用运行在AWS云服务上的Spark框架。我们展示了使用来自公共YFCC 100M集合的多达430亿个SIFT特征向量的实验结果,使其成为文献中报道的最大的高维特征向量集合。原型的设计和性能结果证明了Spark框架实现多媒体服务的灵活性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Engineering a Web-Scale Multimedia Service: A Case Study Using Spark
Computing power has now become abundant with multi-core machines, grids and clouds, but it remains a challenge to harness the available power and move towards gracefully handling web-scale datasets. Several researchers have used automatically distributed computing frameworks, notably Hadoop and Spark, for processing multimedia material, but mostly using small collections on small clusters. In this paper, we describe the engineering process for a prototype of a (near) web-scale multimedia service using the Spark framework running on the AWS cloud service. We present experimental results using up to 43 billion SIFT feature vectors from the public YFCC 100M collection, making this the largest high-dimensional feature vector collection reported in the literature. The design of the prototype and performance results demonstrate both the flexibility and scalability of the Spark framework for implementing multimedia services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信