线性矩阵不等式对偶问题对于H∞输出反馈控制问题的强可行性

Hayato Waki, N. Sebe
{"title":"线性矩阵不等式对偶问题对于H∞输出反馈控制问题的强可行性","authors":"Hayato Waki, N. Sebe","doi":"10.23919/SICEISCS.2018.8330155","DOIUrl":null,"url":null,"abstract":"Strong feasibility (a.k.a. strict feasibility) of the dual problem of a given linear matrix inequality (LMI) is an important property to guarantee the existence of an optimal solution of the LMI problem. In particular, the LMI problem may not have any optimal solutions if the dual is not strongly feasible. This implies that the computed solutions by SDP solvers may be meaningless and useless for designing the controllers of H∞ output feedback control problems. The facial reduction is a tool to analyze and reduce such non-strongly feasible problems. We introduce the strong feasibility of the dual and facial reduction and provide the necessary and sufficient condition on the strong feasibility. Furthermore, we reveal that the condition is closely related to invariant zeros in the plant.","PeriodicalId":122301,"journal":{"name":"2018 SICE International Symposium on Control Systems (SICE ISCS)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Strong feasibility of the dual problem of linear matrix inequality for H∞ output feedback control problem\",\"authors\":\"Hayato Waki, N. Sebe\",\"doi\":\"10.23919/SICEISCS.2018.8330155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strong feasibility (a.k.a. strict feasibility) of the dual problem of a given linear matrix inequality (LMI) is an important property to guarantee the existence of an optimal solution of the LMI problem. In particular, the LMI problem may not have any optimal solutions if the dual is not strongly feasible. This implies that the computed solutions by SDP solvers may be meaningless and useless for designing the controllers of H∞ output feedback control problems. The facial reduction is a tool to analyze and reduce such non-strongly feasible problems. We introduce the strong feasibility of the dual and facial reduction and provide the necessary and sufficient condition on the strong feasibility. Furthermore, we reveal that the condition is closely related to invariant zeros in the plant.\",\"PeriodicalId\":122301,\"journal\":{\"name\":\"2018 SICE International Symposium on Control Systems (SICE ISCS)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 SICE International Symposium on Control Systems (SICE ISCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SICEISCS.2018.8330155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 SICE International Symposium on Control Systems (SICE ISCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SICEISCS.2018.8330155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给定线性矩阵不等式对偶问题的强可行性(即严格可行性)是保证线性矩阵不等式问题最优解存在的重要性质。特别是,如果对偶不是强可行的,LMI问题可能没有任何最优解。这意味着SDP求解器计算的解对于设计H∞输出反馈控制问题的控制器可能是没有意义和无用的。面部还原是分析和减少这类非强可行问题的工具。介绍了双面复位的强可行性,并给出了强可行性的充分必要条件。此外,我们还揭示了该条件与植物中的不变量零密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong feasibility of the dual problem of linear matrix inequality for H∞ output feedback control problem
Strong feasibility (a.k.a. strict feasibility) of the dual problem of a given linear matrix inequality (LMI) is an important property to guarantee the existence of an optimal solution of the LMI problem. In particular, the LMI problem may not have any optimal solutions if the dual is not strongly feasible. This implies that the computed solutions by SDP solvers may be meaningless and useless for designing the controllers of H∞ output feedback control problems. The facial reduction is a tool to analyze and reduce such non-strongly feasible problems. We introduce the strong feasibility of the dual and facial reduction and provide the necessary and sufficient condition on the strong feasibility. Furthermore, we reveal that the condition is closely related to invariant zeros in the plant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信