新方法:i -遗传算法分类陨石坑

R. Krishnan, A. Dharani
{"title":"新方法:i -遗传算法分类陨石坑","authors":"R. Krishnan, A. Dharani","doi":"10.1109/ICCSP.2015.7322881","DOIUrl":null,"url":null,"abstract":"Generally object detection using genetic algorithm in images will consider all pixels of the images for cross over procedure, it is time consuming and expensive in nature. Here the I-Genetic algorithm considers the intensity values of the object interest for classification, so the considerations of all pixels are eliminated which improves execution time as well as object detection. The I-Genetic algorithm considers the intensity values of the object interest for cross over operation.","PeriodicalId":174192,"journal":{"name":"2015 International Conference on Communications and Signal Processing (ICCSP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The new approach: I-Genetic algorithm for classification of craters\",\"authors\":\"R. Krishnan, A. Dharani\",\"doi\":\"10.1109/ICCSP.2015.7322881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generally object detection using genetic algorithm in images will consider all pixels of the images for cross over procedure, it is time consuming and expensive in nature. Here the I-Genetic algorithm considers the intensity values of the object interest for classification, so the considerations of all pixels are eliminated which improves execution time as well as object detection. The I-Genetic algorithm considers the intensity values of the object interest for cross over operation.\",\"PeriodicalId\":174192,\"journal\":{\"name\":\"2015 International Conference on Communications and Signal Processing (ICCSP)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Communications and Signal Processing (ICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP.2015.7322881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Communications and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2015.7322881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一般在图像中使用遗传算法进行目标检测时,需要考虑图像的所有像素点进行交叉处理,耗时长,成本高。在这里,i -遗传算法考虑目标兴趣的强度值进行分类,因此消除了所有像素的考虑,从而提高了执行时间和目标检测。遗传算法考虑目标兴趣的强度值进行交叉操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The new approach: I-Genetic algorithm for classification of craters
Generally object detection using genetic algorithm in images will consider all pixels of the images for cross over procedure, it is time consuming and expensive in nature. Here the I-Genetic algorithm considers the intensity values of the object interest for classification, so the considerations of all pixels are eliminated which improves execution time as well as object detection. The I-Genetic algorithm considers the intensity values of the object interest for cross over operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信