矩阵的极性分解

J. Hearon
{"title":"矩阵的极性分解","authors":"J. Hearon","doi":"10.6028/JRES.071B.012","DOIUrl":null,"url":null,"abstract":"It is known that if A is a bounded linear operator with closed range on a Hilbe rt space then A can be fac tored as A = UH, with U a partial isometry and H nonnegative and self adjoint. For the finite dimensional case a s tri ctly matrix-theoretic derivation is given based on the concept of a ge neralized inverse. Certain properti es of the factors are give n as well as conditions under whic h H or both U and H are uniquely de termined by A. A pivotal ite m in the derivation is the representation of a square partial isometry a s the produc t of a unitary matrix and a n orthogonal projection. Thi s representa tion is new, of some int e rest in itse lf and greatl y s impli fies the de rivations.","PeriodicalId":408709,"journal":{"name":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","volume":"12 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1967-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polar Factorization of a Matrix\",\"authors\":\"J. Hearon\",\"doi\":\"10.6028/JRES.071B.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that if A is a bounded linear operator with closed range on a Hilbe rt space then A can be fac tored as A = UH, with U a partial isometry and H nonnegative and self adjoint. For the finite dimensional case a s tri ctly matrix-theoretic derivation is given based on the concept of a ge neralized inverse. Certain properti es of the factors are give n as well as conditions under whic h H or both U and H are uniquely de termined by A. A pivotal ite m in the derivation is the representation of a square partial isometry a s the produc t of a unitary matrix and a n orthogonal projection. Thi s representa tion is new, of some int e rest in itse lf and greatl y s impli fies the de rivations.\",\"PeriodicalId\":408709,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"volume\":\"12 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1967-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.071B.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.071B.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

已知如果A是Hilbe rt空间上闭值域的有界线性算子,则A可以分解为A = UH,其中U为部分等距,H非负且自伴随。对于有限维的情况,基于广义逆的概念给出了一个三矩阵理论的推导。给出了因子的某些性质,并给出了h h或U和h唯一由A决定的条件。推导过程中的一个关键点是平方偏等距的表达式A是一个酉矩阵和一个正交投影的乘积t。这种表示是新的,在其本身的生活中有一些兴趣,并且在很大程度上暗示了这种变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polar Factorization of a Matrix
It is known that if A is a bounded linear operator with closed range on a Hilbe rt space then A can be fac tored as A = UH, with U a partial isometry and H nonnegative and self adjoint. For the finite dimensional case a s tri ctly matrix-theoretic derivation is given based on the concept of a ge neralized inverse. Certain properti es of the factors are give n as well as conditions under whic h H or both U and H are uniquely de termined by A. A pivotal ite m in the derivation is the representation of a square partial isometry a s the produc t of a unitary matrix and a n orthogonal projection. Thi s representa tion is new, of some int e rest in itse lf and greatl y s impli fies the de rivations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信