退化积分泛函的随机均匀化及其欧拉-拉格朗日方程

M. Ruf, T. Ruf
{"title":"退化积分泛函的随机均匀化及其欧拉-拉格朗日方程","authors":"M. Ruf, T. Ruf","doi":"10.5802/jep.218","DOIUrl":null,"url":null,"abstract":"We prove stochastic homogenization for integral functionals defined on Sobolev spaces, where the stationary, ergodic integrand satisfies a degenerate growth condition of the form c|ξA(ω, x)| ≤ f(ω, x, ξ) ≤ |ξA(ω, x)| +Λ(ω, x) for some p ∈ (1,+∞) and with a stationary and ergodic diagonal matrix A such that its norm and the norm of its inverse satisfy minimal integrability assumptions. We also consider the convergence when Dirichlet boundary conditions or an obstacle condition are imposed. Assuming the strict convexity and differentiability of f with respect to its last variable, we further prove that the homogenized integrand is also strictly convex and differentiable. These properties allow us to show homogenization of the associated Euler-Lagrange equations.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stochastic homogenization of degenerate integral functionals and their Euler-Lagrange equations\",\"authors\":\"M. Ruf, T. Ruf\",\"doi\":\"10.5802/jep.218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove stochastic homogenization for integral functionals defined on Sobolev spaces, where the stationary, ergodic integrand satisfies a degenerate growth condition of the form c|ξA(ω, x)| ≤ f(ω, x, ξ) ≤ |ξA(ω, x)| +Λ(ω, x) for some p ∈ (1,+∞) and with a stationary and ergodic diagonal matrix A such that its norm and the norm of its inverse satisfy minimal integrability assumptions. We also consider the convergence when Dirichlet boundary conditions or an obstacle condition are imposed. Assuming the strict convexity and differentiability of f with respect to its last variable, we further prove that the homogenized integrand is also strictly convex and differentiable. These properties allow us to show homogenization of the associated Euler-Lagrange equations.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们证明了Sobolev空间上定义的积分泛函的随机齐次化,其中平稳遍历被积函数满足退化生长条件c|ξ a (ω, x)|≤f(ω, x, ξ)≤|ξ a (ω, x)| +Λ(ω, x),对于某p∈(1,+∞),并且具有平稳遍历对角矩阵a,使得其范数及其逆范数满足最小可积假设。我们还考虑了狄利克雷边界条件和障碍条件下的收敛性。假设f对其最后一个变量具有严格的凸性和可微性,进一步证明了齐次被积函数也是严格凸可微的。这些性质使我们能够证明相关欧拉-拉格朗日方程的均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic homogenization of degenerate integral functionals and their Euler-Lagrange equations
We prove stochastic homogenization for integral functionals defined on Sobolev spaces, where the stationary, ergodic integrand satisfies a degenerate growth condition of the form c|ξA(ω, x)| ≤ f(ω, x, ξ) ≤ |ξA(ω, x)| +Λ(ω, x) for some p ∈ (1,+∞) and with a stationary and ergodic diagonal matrix A such that its norm and the norm of its inverse satisfy minimal integrability assumptions. We also consider the convergence when Dirichlet boundary conditions or an obstacle condition are imposed. Assuming the strict convexity and differentiability of f with respect to its last variable, we further prove that the homogenized integrand is also strictly convex and differentiable. These properties allow us to show homogenization of the associated Euler-Lagrange equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信