{"title":"用集体实体提及填充知识库:基于图的方法","authors":"Hailun Lin, Yantao Jia, Yuanzhuo Wang, Xiaolong Jin, Xiaojing Li, Xueqi Cheng","doi":"10.1109/ASONAM.2014.6921648","DOIUrl":null,"url":null,"abstract":"Populating a knowledge base with new entity mentions extracted from unstructured text can help enhance its coverage and freshness. It naturally consists of two subtasks, namely, fine-grained entity classification and entity linking. Existing studies often focus on one of these two subtasks and they usually populate entity mentions in the same text by implicitly assuming that they are independent. However, these entity mentions are often semantically related to each other and it would be better to populate them into the knowledge base collectively. For solving these problems, in this paper we propose an interdependence graph based and unified collective inference approach, called CIIGA, to populating a knowledge base with collective entities, which can jointly determine the proper locations of all entity mentions in the same text by exploiting their interdependence relationships. Experimental results show that this approach can achieve significant accuracy improvement, as compared to the baseline approach, APOLLO, on the task of knowledge base population with multiple entities.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"335 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Populating knowledge base with collective entity mentions: A graph-based approach\",\"authors\":\"Hailun Lin, Yantao Jia, Yuanzhuo Wang, Xiaolong Jin, Xiaojing Li, Xueqi Cheng\",\"doi\":\"10.1109/ASONAM.2014.6921648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Populating a knowledge base with new entity mentions extracted from unstructured text can help enhance its coverage and freshness. It naturally consists of two subtasks, namely, fine-grained entity classification and entity linking. Existing studies often focus on one of these two subtasks and they usually populate entity mentions in the same text by implicitly assuming that they are independent. However, these entity mentions are often semantically related to each other and it would be better to populate them into the knowledge base collectively. For solving these problems, in this paper we propose an interdependence graph based and unified collective inference approach, called CIIGA, to populating a knowledge base with collective entities, which can jointly determine the proper locations of all entity mentions in the same text by exploiting their interdependence relationships. Experimental results show that this approach can achieve significant accuracy improvement, as compared to the baseline approach, APOLLO, on the task of knowledge base population with multiple entities.\",\"PeriodicalId\":143584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"volume\":\"335 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM.2014.6921648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Populating knowledge base with collective entity mentions: A graph-based approach
Populating a knowledge base with new entity mentions extracted from unstructured text can help enhance its coverage and freshness. It naturally consists of two subtasks, namely, fine-grained entity classification and entity linking. Existing studies often focus on one of these two subtasks and they usually populate entity mentions in the same text by implicitly assuming that they are independent. However, these entity mentions are often semantically related to each other and it would be better to populate them into the knowledge base collectively. For solving these problems, in this paper we propose an interdependence graph based and unified collective inference approach, called CIIGA, to populating a knowledge base with collective entities, which can jointly determine the proper locations of all entity mentions in the same text by exploiting their interdependence relationships. Experimental results show that this approach can achieve significant accuracy improvement, as compared to the baseline approach, APOLLO, on the task of knowledge base population with multiple entities.