基于贝叶斯正则化的SAR图像特征增强

M. Fiani-Nouvel
{"title":"基于贝叶斯正则化的SAR图像特征增强","authors":"M. Fiani-Nouvel","doi":"10.1109/RADAR.2005.1435889","DOIUrl":null,"url":null,"abstract":"SAR imaging has an increasing interest in the surveillance and aircraft combat fields. The final aim is generally automatic target detection and recognition applications for assisted interpretation. To help these recognition processes it is important to get good quality SAR images, without loss of resolution. Particularly, we propose to enhance the image feature by reducing the sidelobe artefacts and smoothing the speckle. The methodology is the resolution of an ill-posed inverse problem by Bayesian regularization. The solution is then the value which minimizes a well-chosen penalised criteria. The originalities are minimization algorithm choice and real data applications.","PeriodicalId":444253,"journal":{"name":"IEEE International Radar Conference, 2005.","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Feature-enhancement of SAR images by Bayesian regularization\",\"authors\":\"M. Fiani-Nouvel\",\"doi\":\"10.1109/RADAR.2005.1435889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SAR imaging has an increasing interest in the surveillance and aircraft combat fields. The final aim is generally automatic target detection and recognition applications for assisted interpretation. To help these recognition processes it is important to get good quality SAR images, without loss of resolution. Particularly, we propose to enhance the image feature by reducing the sidelobe artefacts and smoothing the speckle. The methodology is the resolution of an ill-posed inverse problem by Bayesian regularization. The solution is then the value which minimizes a well-chosen penalised criteria. The originalities are minimization algorithm choice and real data applications.\",\"PeriodicalId\":444253,\"journal\":{\"name\":\"IEEE International Radar Conference, 2005.\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Radar Conference, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2005.1435889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Radar Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2005.1435889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

SAR成像在监视和飞机作战领域越来越受到关注。最终目的一般是自动目标检测和识别应用辅助口译。为了帮助这些识别过程,重要的是获得高质量的SAR图像,而不损失分辨率。特别地,我们提出通过减少副瓣伪影和平滑散斑来增强图像特征。该方法是用贝叶斯正则化方法解决一个病态逆问题。那么解决方案就是使精心选择的惩罚标准最小化的值。其创新点在于最小化算法的选择和实际数据的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature-enhancement of SAR images by Bayesian regularization
SAR imaging has an increasing interest in the surveillance and aircraft combat fields. The final aim is generally automatic target detection and recognition applications for assisted interpretation. To help these recognition processes it is important to get good quality SAR images, without loss of resolution. Particularly, we propose to enhance the image feature by reducing the sidelobe artefacts and smoothing the speckle. The methodology is the resolution of an ill-posed inverse problem by Bayesian regularization. The solution is then the value which minimizes a well-chosen penalised criteria. The originalities are minimization algorithm choice and real data applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信