自组织模型非线性卡尔曼滤波

{"title":"自组织模型非线性卡尔曼滤波","authors":"","doi":"10.36652/0869-4931-2021-75-2-73-78","DOIUrl":null,"url":null,"abstract":"To improve the accuracy of the aircraft navigation system error correction in the output signal is used. The errors of the navigation complex are estimated by using a nonlinear Kalman filter. It is proposed to use a nonlinear model constructed by the method of self-organization as a model of the process being evaluated. The effectiveness of the self-organization algorithm in comparison with the genetic algorithm and the neural network is confirmed by the results of mathematical modeling.\n\nKeywords\naircraft; inertial navigation system; error model; self-organization algorithm","PeriodicalId":309803,"journal":{"name":"Automation. Modern Techologies","volume":"710 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Kalman filter with self-organizing model\",\"authors\":\"\",\"doi\":\"10.36652/0869-4931-2021-75-2-73-78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the accuracy of the aircraft navigation system error correction in the output signal is used. The errors of the navigation complex are estimated by using a nonlinear Kalman filter. It is proposed to use a nonlinear model constructed by the method of self-organization as a model of the process being evaluated. The effectiveness of the self-organization algorithm in comparison with the genetic algorithm and the neural network is confirmed by the results of mathematical modeling.\\n\\nKeywords\\naircraft; inertial navigation system; error model; self-organization algorithm\",\"PeriodicalId\":309803,\"journal\":{\"name\":\"Automation. Modern Techologies\",\"volume\":\"710 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation. Modern Techologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36652/0869-4931-2021-75-2-73-78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation. Modern Techologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36652/0869-4931-2021-75-2-73-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高飞机导航系统的精度,对输出信号进行了误差校正。利用非线性卡尔曼滤波对导航复合体的误差进行估计。提出了用自组织方法构造的非线性模型作为评价过程的模型。数学建模结果验证了自组织算法与遗传算法和神经网络的有效性。关键词:飞机;惯性导航系统;误差模型;自组织算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Kalman filter with self-organizing model
To improve the accuracy of the aircraft navigation system error correction in the output signal is used. The errors of the navigation complex are estimated by using a nonlinear Kalman filter. It is proposed to use a nonlinear model constructed by the method of self-organization as a model of the process being evaluated. The effectiveness of the self-organization algorithm in comparison with the genetic algorithm and the neural network is confirmed by the results of mathematical modeling. Keywords aircraft; inertial navigation system; error model; self-organization algorithm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信