{"title":"基于线性回归和神经网络的广义剖面函数模型的比较","authors":"P. Radonja","doi":"10.1109/NEUREL.2012.6419959","DOIUrl":null,"url":null,"abstract":"In this paper, the generalized profile function models, GPFMs, based on linear regression and neural networks, are compared. GPFM provides an approximation of individual models (models of individual stem profile) facility using only two basic measurements. GPFM based on neural network is obtained as the average of all available normalized individual models. It is shown that the application of neural networks provides a generalized model with good performance.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"709 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of generalized profile function models based on linear regression and neural networks\",\"authors\":\"P. Radonja\",\"doi\":\"10.1109/NEUREL.2012.6419959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the generalized profile function models, GPFMs, based on linear regression and neural networks, are compared. GPFM provides an approximation of individual models (models of individual stem profile) facility using only two basic measurements. GPFM based on neural network is obtained as the average of all available normalized individual models. It is shown that the application of neural networks provides a generalized model with good performance.\",\"PeriodicalId\":343718,\"journal\":{\"name\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"709 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2012.6419959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6419959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of generalized profile function models based on linear regression and neural networks
In this paper, the generalized profile function models, GPFMs, based on linear regression and neural networks, are compared. GPFM provides an approximation of individual models (models of individual stem profile) facility using only two basic measurements. GPFM based on neural network is obtained as the average of all available normalized individual models. It is shown that the application of neural networks provides a generalized model with good performance.