系统生物学参数估计问题的合作策略:初步结果

A. Masegosa, Federico Rutolo, D. Pelta
{"title":"系统生物学参数估计问题的合作策略:初步结果","authors":"A. Masegosa, Federico Rutolo, D. Pelta","doi":"10.1109/ISDA.2011.6121823","DOIUrl":null,"url":null,"abstract":"Developing predictive models is one of the key issues in Systems Biology. A critical problems that arises when these models are built is the parameter estimation. The calibration of these nonlinear dynamic models is stated as a nonlinear programming problems (NLP) and its resolution is usually complex due to the frequent ill-conditioning and multimodality of the majority of these problems. For that reason, the use of hybrid stochastic optimization methods has received an increasing interest in recent years. In this work we present a new hybrid method for parameter estimation in Systems Biology. This proposal consists on a set of DE algorithms that cooperate among them through a centralised scheme in which a coordinator controls their behavior by means of a rule system. The comparison with state-of-the-art methods shows the better performance of this cooperative strategy when the complexity of the instances is increased.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cooperative strategy for parameter estimation problems in Systems Biology: Preliminary results\",\"authors\":\"A. Masegosa, Federico Rutolo, D. Pelta\",\"doi\":\"10.1109/ISDA.2011.6121823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing predictive models is one of the key issues in Systems Biology. A critical problems that arises when these models are built is the parameter estimation. The calibration of these nonlinear dynamic models is stated as a nonlinear programming problems (NLP) and its resolution is usually complex due to the frequent ill-conditioning and multimodality of the majority of these problems. For that reason, the use of hybrid stochastic optimization methods has received an increasing interest in recent years. In this work we present a new hybrid method for parameter estimation in Systems Biology. This proposal consists on a set of DE algorithms that cooperate among them through a centralised scheme in which a coordinator controls their behavior by means of a rule system. The comparison with state-of-the-art methods shows the better performance of this cooperative strategy when the complexity of the instances is increased.\",\"PeriodicalId\":433207,\"journal\":{\"name\":\"2011 11th International Conference on Intelligent Systems Design and Applications\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 11th International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2011.6121823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发展预测模型是系统生物学的关键问题之一。在建立这些模型时出现的一个关键问题是参数估计。这些非线性动态模型的标定被描述为一个非线性规划问题,由于这些问题经常存在病态和多模态,其求解通常是复杂的。由于这个原因,混合随机优化方法的使用近年来受到越来越多的关注。在这项工作中,我们提出了一种新的系统生物学参数估计的混合方法。该建议由一组DE算法组成,这些算法通过一个集中的方案在它们之间进行合作,其中协调器通过规则系统控制它们的行为。与现有方法的比较表明,当实例复杂度增加时,该协作策略的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cooperative strategy for parameter estimation problems in Systems Biology: Preliminary results
Developing predictive models is one of the key issues in Systems Biology. A critical problems that arises when these models are built is the parameter estimation. The calibration of these nonlinear dynamic models is stated as a nonlinear programming problems (NLP) and its resolution is usually complex due to the frequent ill-conditioning and multimodality of the majority of these problems. For that reason, the use of hybrid stochastic optimization methods has received an increasing interest in recent years. In this work we present a new hybrid method for parameter estimation in Systems Biology. This proposal consists on a set of DE algorithms that cooperate among them through a centralised scheme in which a coordinator controls their behavior by means of a rule system. The comparison with state-of-the-art methods shows the better performance of this cooperative strategy when the complexity of the instances is increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信