利用η-拟凸性估计ω-Riemann-Liouville分数积分算子,并应用于均值

E. Nwaeze
{"title":"利用η-拟凸性估计ω-Riemann-Liouville分数积分算子,并应用于均值","authors":"E. Nwaeze","doi":"10.7153/fdc-2020-10-03","DOIUrl":null,"url":null,"abstract":". Since not every quasiconvex function is convex, it is our purpose in this present paper to extend some already established inequalities of the Hermite–Hadamard–Fej´er type and its companions for convex functions to the class of η -quasiconvex functions. The new results obtained herein are in terms of the ω -Riemann–Liouville fractional integral operators and they reduce to inequalities for quasiconvex functions for a particular choice of the bifunction η . In addition, we apply some of our results to certain special means of positive real numbers to obtain more estimates in this regard.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimates involving the ω-Riemann-Liouville fractional integral operators by means of η-quasiconvexity with applications to means\",\"authors\":\"E. Nwaeze\",\"doi\":\"10.7153/fdc-2020-10-03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Since not every quasiconvex function is convex, it is our purpose in this present paper to extend some already established inequalities of the Hermite–Hadamard–Fej´er type and its companions for convex functions to the class of η -quasiconvex functions. The new results obtained herein are in terms of the ω -Riemann–Liouville fractional integral operators and they reduce to inequalities for quasiconvex functions for a particular choice of the bifunction η . In addition, we apply some of our results to certain special means of positive real numbers to obtain more estimates in this regard.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/fdc-2020-10-03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2020-10-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

. 由于并不是所有的拟凸函数都是凸的,所以本文的目的是将一些已经建立的关于凸函数的Hermite-Hadamard-Fej´er型及其伴随型的不等式推广到η -拟凸函数的类中。本文所得到的新结果是用ω -Riemann-Liouville分数阶积分算子表示的,并且对于双函数η的特定选择,它们简化为拟凸函数的不等式。此外,我们将我们的一些结果应用于某些正实数的特殊手段,以获得这方面的更多估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimates involving the ω-Riemann-Liouville fractional integral operators by means of η-quasiconvexity with applications to means
. Since not every quasiconvex function is convex, it is our purpose in this present paper to extend some already established inequalities of the Hermite–Hadamard–Fej´er type and its companions for convex functions to the class of η -quasiconvex functions. The new results obtained herein are in terms of the ω -Riemann–Liouville fractional integral operators and they reduce to inequalities for quasiconvex functions for a particular choice of the bifunction η . In addition, we apply some of our results to certain special means of positive real numbers to obtain more estimates in this regard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信