格等四边形I:平行四边形

Christian Aebi, G. Cairns
{"title":"格等四边形I:平行四边形","authors":"Christian Aebi, G. Cairns","doi":"10.4171/lem/1013","DOIUrl":null,"url":null,"abstract":". This paper studies equable parallelograms whose vertices lie on the integer lattice. Using Rosenberger’s Theorem on generalised Markov equations, we show that the g.c.d. of the side lengths of such parallelograms can only be 3, 4 or 5, and in each of these cases the set of parallelograms naturally forms an infinite tree all of whose vertices have degree 4, bar the root. The paper then focuses on what we call Pythagorean equable paral- lelograms. These are lattice equable parallelograms whose complement in a circumscribing rectangle consists of two Pythagorean triangles. We prove that for these parallelograms the shortest side can only be 3, 4, 5, 6 or 10, and there are five infinite families of such parallelograms, given by solutions to corresponding Pell-like equations.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lattice equable quadrilaterals I: Parallelograms\",\"authors\":\"Christian Aebi, G. Cairns\",\"doi\":\"10.4171/lem/1013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper studies equable parallelograms whose vertices lie on the integer lattice. Using Rosenberger’s Theorem on generalised Markov equations, we show that the g.c.d. of the side lengths of such parallelograms can only be 3, 4 or 5, and in each of these cases the set of parallelograms naturally forms an infinite tree all of whose vertices have degree 4, bar the root. The paper then focuses on what we call Pythagorean equable paral- lelograms. These are lattice equable parallelograms whose complement in a circumscribing rectangle consists of two Pythagorean triangles. We prove that for these parallelograms the shortest side can only be 3, 4, 5, 6 or 10, and there are five infinite families of such parallelograms, given by solutions to corresponding Pell-like equations.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/1013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

. 研究顶点位于整数格上的相等平行四边形。利用广义马尔可夫方程上的罗森伯格定理,我们证明了这些平行四边形的边长的gc.d.只能是3,4或5,并且在每种情况下,平行四边形的集合自然形成了一个无限树,其所有顶点都是4度,除了根。然后,本文着重于我们所说的毕达哥拉斯相等平行四边形。这些是格等平行四边形,它们在一个外围矩形中的补由两个毕达哥拉斯三角形组成。我们证明了这些平行四边形的最短边只能是3、4、5、6或10,并且这些平行四边形有5个无限族,由相应的类佩尔方程的解给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lattice equable quadrilaterals I: Parallelograms
. This paper studies equable parallelograms whose vertices lie on the integer lattice. Using Rosenberger’s Theorem on generalised Markov equations, we show that the g.c.d. of the side lengths of such parallelograms can only be 3, 4 or 5, and in each of these cases the set of parallelograms naturally forms an infinite tree all of whose vertices have degree 4, bar the root. The paper then focuses on what we call Pythagorean equable paral- lelograms. These are lattice equable parallelograms whose complement in a circumscribing rectangle consists of two Pythagorean triangles. We prove that for these parallelograms the shortest side can only be 3, 4, 5, 6 or 10, and there are five infinite families of such parallelograms, given by solutions to corresponding Pell-like equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信