人类认知建模基础结构中语言促进的人机合作:以太空探索任务为例

Yan Fu, Shiqi Li, Kan Qiu, Xue Li, L. Chen, Jie Tan
{"title":"人类认知建模基础结构中语言促进的人机合作:以太空探索任务为例","authors":"Yan Fu, Shiqi Li, Kan Qiu, Xue Li, L. Chen, Jie Tan","doi":"10.1109/ICHMS49158.2020.9209506","DOIUrl":null,"url":null,"abstract":"It is natural and efficient to use natural language for transferring knowledge from a human to a robot. The inconsistency of human-robot spatial cognitive style, the high frequency communication and low-cognition-level symbol matching control have greatly affected the operational efficiency in spatial-cognition-demanding tasks such as positioning and exploring. To fill the knowledge gap, this study applies ACT-R cognitive theory to establish a new way of knowledge representation and processing for the robots with a purpose to improve the flexibility of natural language facilitated humanrobot cooperation. This idea is specifically validated in the task of human-robot teaming space exploration.","PeriodicalId":132917,"journal":{"name":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Language-Facilitated Human-Robot Cooperation within a Human Cognitive Modeling Infrastructure: A Case in Space Exploration Task\",\"authors\":\"Yan Fu, Shiqi Li, Kan Qiu, Xue Li, L. Chen, Jie Tan\",\"doi\":\"10.1109/ICHMS49158.2020.9209506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is natural and efficient to use natural language for transferring knowledge from a human to a robot. The inconsistency of human-robot spatial cognitive style, the high frequency communication and low-cognition-level symbol matching control have greatly affected the operational efficiency in spatial-cognition-demanding tasks such as positioning and exploring. To fill the knowledge gap, this study applies ACT-R cognitive theory to establish a new way of knowledge representation and processing for the robots with a purpose to improve the flexibility of natural language facilitated humanrobot cooperation. This idea is specifically validated in the task of human-robot teaming space exploration.\",\"PeriodicalId\":132917,\"journal\":{\"name\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHMS49158.2020.9209506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHMS49158.2020.9209506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用自然语言将人类的知识传递给机器人是一种自然而高效的方法。在定位、探索等空间认知要求较高的任务中,人机空间认知风格的不一致性、高频率的通信和低认知水平的符号匹配控制极大地影响了操作效率。为了填补这一知识空白,本研究运用ACT-R认知理论,为机器人建立一种新的知识表示和处理方式,以提高自然语言的灵活性,促进人-机器人合作。这个想法在人类与机器人合作的太空探索任务中得到了特别的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Language-Facilitated Human-Robot Cooperation within a Human Cognitive Modeling Infrastructure: A Case in Space Exploration Task
It is natural and efficient to use natural language for transferring knowledge from a human to a robot. The inconsistency of human-robot spatial cognitive style, the high frequency communication and low-cognition-level symbol matching control have greatly affected the operational efficiency in spatial-cognition-demanding tasks such as positioning and exploring. To fill the knowledge gap, this study applies ACT-R cognitive theory to establish a new way of knowledge representation and processing for the robots with a purpose to improve the flexibility of natural language facilitated humanrobot cooperation. This idea is specifically validated in the task of human-robot teaming space exploration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信