基于聚类有效性指标法的多输出数据集分类方法

K. Huang, Shann-Bin Chang, Lieh-Dai Yang
{"title":"基于聚类有效性指标法的多输出数据集分类方法","authors":"K. Huang, Shann-Bin Chang, Lieh-Dai Yang","doi":"10.1109/ICAWST.2017.8256519","DOIUrl":null,"url":null,"abstract":"A cluster validity index (CVI) classification method is applied to enhance the performance of existing Multiple-Attribute Decision Making (MADM) method. This paper proposed index-based method is called the FRM-index method which combined Fuzzy Set (FS), Rough Set (RS), and a cluster validity index function. The effectiveness of the proposed FRM-index method is evaluated by comparing the classification results obtained for the relating UCI datasets using a statistical approach. Overall, the results show that the proposed method not only provides a more reliable basis for the extraction of decisionmaking rules for multi-output datasets, but also fills out the uncertainty and facilitates an effective MADM built.","PeriodicalId":378618,"journal":{"name":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The approach to classifying multi-output datasets based on cluster validity index method\",\"authors\":\"K. Huang, Shann-Bin Chang, Lieh-Dai Yang\",\"doi\":\"10.1109/ICAWST.2017.8256519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cluster validity index (CVI) classification method is applied to enhance the performance of existing Multiple-Attribute Decision Making (MADM) method. This paper proposed index-based method is called the FRM-index method which combined Fuzzy Set (FS), Rough Set (RS), and a cluster validity index function. The effectiveness of the proposed FRM-index method is evaluated by comparing the classification results obtained for the relating UCI datasets using a statistical approach. Overall, the results show that the proposed method not only provides a more reliable basis for the extraction of decisionmaking rules for multi-output datasets, but also fills out the uncertainty and facilitates an effective MADM built.\",\"PeriodicalId\":378618,\"journal\":{\"name\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2017.8256519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2017.8256519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用聚类有效性指数(CVI)分类方法,提高了现有多属性决策方法的性能。本文提出了一种结合模糊集(FS)、粗糙集(RS)和聚类有效性指标函数的基于指标的方法,称为FRM-index方法。通过比较统计方法对相关UCI数据集的分类结果,评价了FRM-index方法的有效性。结果表明,该方法不仅为多输出数据集的决策规则提取提供了更可靠的依据,而且填补了不确定性,有利于构建有效的MADM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The approach to classifying multi-output datasets based on cluster validity index method
A cluster validity index (CVI) classification method is applied to enhance the performance of existing Multiple-Attribute Decision Making (MADM) method. This paper proposed index-based method is called the FRM-index method which combined Fuzzy Set (FS), Rough Set (RS), and a cluster validity index function. The effectiveness of the proposed FRM-index method is evaluated by comparing the classification results obtained for the relating UCI datasets using a statistical approach. Overall, the results show that the proposed method not only provides a more reliable basis for the extraction of decisionmaking rules for multi-output datasets, but also fills out the uncertainty and facilitates an effective MADM built.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信