无投影基点的曲面参数化覆盖

J. Sendra, David Sevilla, Carlos Villarino
{"title":"无投影基点的曲面参数化覆盖","authors":"J. Sendra, David Sevilla, Carlos Villarino","doi":"10.1145/2608628.2608635","DOIUrl":null,"url":null,"abstract":"We prove that every affine rational surface, parametrized by means of an affine rational parametrization without projective base points, can be covered by at most three parametrizations. Moreover, we give explicit formulas for computing the coverings. We provide two different approaches: either covering the surface with a surface parametrization plus a curve parametrization plus a point, or with the original parametrization plus two surface reparametrizations of it.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Covering of surfaces parametrized without projective base points\",\"authors\":\"J. Sendra, David Sevilla, Carlos Villarino\",\"doi\":\"10.1145/2608628.2608635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that every affine rational surface, parametrized by means of an affine rational parametrization without projective base points, can be covered by at most three parametrizations. Moreover, we give explicit formulas for computing the coverings. We provide two different approaches: either covering the surface with a surface parametrization plus a curve parametrization plus a point, or with the original parametrization plus two surface reparametrizations of it.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

证明了每一个仿射有理曲面,在没有射影基点的仿射有理参数化下,最多可以被三个参数化覆盖。此外,我们给出了计算覆盖的显式公式。我们提供了两种不同的方法:用曲面参数化加上曲线参数化加上一个点来覆盖曲面,或者用原始参数化加上它的两个曲面再参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covering of surfaces parametrized without projective base points
We prove that every affine rational surface, parametrized by means of an affine rational parametrization without projective base points, can be covered by at most three parametrizations. Moreover, we give explicit formulas for computing the coverings. We provide two different approaches: either covering the surface with a surface parametrization plus a curve parametrization plus a point, or with the original parametrization plus two surface reparametrizations of it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信