基于词向量表示的越南语短评论情感分析

Thien Ho Huong, Kiet Tran-Trung, D. Lai, Vinh Truong Hoang
{"title":"基于词向量表示的越南语短评论情感分析","authors":"Thien Ho Huong, Kiet Tran-Trung, D. Lai, Vinh Truong Hoang","doi":"10.1109/NICS56915.2022.10013426","DOIUrl":null,"url":null,"abstract":"Word vector representation is a major stage in Natural Language Processing (NLP). It can be applied in various application such as sentiment analysis, text mining, topic detection, document summarization, information retrieval and has an impact to the performance. In literature, different proposed method focus on enhancing word representation model by N-gram, TF-IDF, and word embedding. This paper investigates several word vector representation for Vietnamese sentiment analysis including TF-IDF, Word2Vec, GloVe, and Doc2Vec. The experiment is evaluated on the five common classifiers and two Vietnamese sentiment analysis dataset.","PeriodicalId":381028,"journal":{"name":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sentiment Analysis based on word vector representation for short comments in Vietnamese language\",\"authors\":\"Thien Ho Huong, Kiet Tran-Trung, D. Lai, Vinh Truong Hoang\",\"doi\":\"10.1109/NICS56915.2022.10013426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Word vector representation is a major stage in Natural Language Processing (NLP). It can be applied in various application such as sentiment analysis, text mining, topic detection, document summarization, information retrieval and has an impact to the performance. In literature, different proposed method focus on enhancing word representation model by N-gram, TF-IDF, and word embedding. This paper investigates several word vector representation for Vietnamese sentiment analysis including TF-IDF, Word2Vec, GloVe, and Doc2Vec. The experiment is evaluated on the five common classifiers and two Vietnamese sentiment analysis dataset.\",\"PeriodicalId\":381028,\"journal\":{\"name\":\"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS56915.2022.10013426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS56915.2022.10013426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

词向量表示是自然语言处理(NLP)中的一个重要阶段。它可以应用于情感分析、文本挖掘、主题检测、文档摘要、信息检索等各种应用中,并对性能产生影响。文献中提出的不同方法主要是通过N-gram、TF-IDF和词嵌入来增强词表示模型。本文研究了几种用于越南语情感分析的词向量表示,包括TF-IDF、Word2Vec、GloVe和Doc2Vec。实验在五个常用分类器和两个越南情感分析数据集上进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis based on word vector representation for short comments in Vietnamese language
Word vector representation is a major stage in Natural Language Processing (NLP). It can be applied in various application such as sentiment analysis, text mining, topic detection, document summarization, information retrieval and has an impact to the performance. In literature, different proposed method focus on enhancing word representation model by N-gram, TF-IDF, and word embedding. This paper investigates several word vector representation for Vietnamese sentiment analysis including TF-IDF, Word2Vec, GloVe, and Doc2Vec. The experiment is evaluated on the five common classifiers and two Vietnamese sentiment analysis dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信