用代码级验证证明微内核中的内存分离

Christoph Baumann, Thorsten Bormer, Holger Blasum, S. Tverdyshev
{"title":"用代码级验证证明微内核中的内存分离","authors":"Christoph Baumann, Thorsten Bormer, Holger Blasum, S. Tverdyshev","doi":"10.1109/ISORCW.2011.14","DOIUrl":null,"url":null,"abstract":"Often, an integrated mixed-criticality system is built in an environment which provides separation functionality for available on-board resources. In this paper we treat such an environment: the PikeOS separation kernel -- a commercial real-time embedded operating system. PikeOS allows applications with different safety and security levels to run on the same hardware. Obviously, a mixed-criticality system built on PikeOS relies on the correct implementation of the separation mechanisms. In the context of the Verisoft XT and TECOM projects we apply deductive formal software verification to the PikeOS separation mechanisms in order to validate this security requirement. In this work we consider formal verification of a kernel memory manager which is one of the crucial components of the separation functionality. The verification of the memory manager is carried out on the level of the source code using the VCC tool developed by Microsoft Research. Furthermore, we present the overall correctness arguments needed to prove the intended separation property, describe the necessary functional correctness properties of PikeOS, and explain how to formulate these properties in a modular way to be used by VCC. In doing so we demonstrate how a proof of a non-functional system requirement can be conducted based on results from formal verification on the lowest possible level of human-written artefacts, that is the source code level.","PeriodicalId":126022,"journal":{"name":"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Proving Memory Separation in a Microkernel by Code Level Verification\",\"authors\":\"Christoph Baumann, Thorsten Bormer, Holger Blasum, S. Tverdyshev\",\"doi\":\"10.1109/ISORCW.2011.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Often, an integrated mixed-criticality system is built in an environment which provides separation functionality for available on-board resources. In this paper we treat such an environment: the PikeOS separation kernel -- a commercial real-time embedded operating system. PikeOS allows applications with different safety and security levels to run on the same hardware. Obviously, a mixed-criticality system built on PikeOS relies on the correct implementation of the separation mechanisms. In the context of the Verisoft XT and TECOM projects we apply deductive formal software verification to the PikeOS separation mechanisms in order to validate this security requirement. In this work we consider formal verification of a kernel memory manager which is one of the crucial components of the separation functionality. The verification of the memory manager is carried out on the level of the source code using the VCC tool developed by Microsoft Research. Furthermore, we present the overall correctness arguments needed to prove the intended separation property, describe the necessary functional correctness properties of PikeOS, and explain how to formulate these properties in a modular way to be used by VCC. In doing so we demonstrate how a proof of a non-functional system requirement can be conducted based on results from formal verification on the lowest possible level of human-written artefacts, that is the source code level.\",\"PeriodicalId\":126022,\"journal\":{\"name\":\"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORCW.2011.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORCW.2011.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

通常,集成的混合临界系统是在为可用的机载资源提供分离功能的环境中构建的。在本文中,我们处理这样一个环境:PikeOS分离内核——一个商业实时嵌入式操作系统。PikeOS允许具有不同安全和安全级别的应用程序在相同的硬件上运行。显然,建立在PikeOS上的混合临界系统依赖于分离机制的正确实现。在Verisoft XT和TECOM项目的背景下,我们对PikeOS分离机制应用演绎的形式化软件验证,以验证这一安全需求。在这项工作中,我们考虑了内核内存管理器的形式化验证,它是分离功能的关键组成部分之一。使用微软研究院开发的VCC工具在源代码级别上对内存管理器进行验证。此外,我们提出了证明预期分离属性所需的总体正确性参数,描述了PikeOS必要的功能正确性属性,并解释了如何以模块化的方式制定这些属性以供VCC使用。在这样做的过程中,我们演示了如何根据形式化验证的结果,在尽可能低的人类编写的工件(即源代码级别)上进行非功能性系统需求的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proving Memory Separation in a Microkernel by Code Level Verification
Often, an integrated mixed-criticality system is built in an environment which provides separation functionality for available on-board resources. In this paper we treat such an environment: the PikeOS separation kernel -- a commercial real-time embedded operating system. PikeOS allows applications with different safety and security levels to run on the same hardware. Obviously, a mixed-criticality system built on PikeOS relies on the correct implementation of the separation mechanisms. In the context of the Verisoft XT and TECOM projects we apply deductive formal software verification to the PikeOS separation mechanisms in order to validate this security requirement. In this work we consider formal verification of a kernel memory manager which is one of the crucial components of the separation functionality. The verification of the memory manager is carried out on the level of the source code using the VCC tool developed by Microsoft Research. Furthermore, we present the overall correctness arguments needed to prove the intended separation property, describe the necessary functional correctness properties of PikeOS, and explain how to formulate these properties in a modular way to be used by VCC. In doing so we demonstrate how a proof of a non-functional system requirement can be conducted based on results from formal verification on the lowest possible level of human-written artefacts, that is the source code level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信