图上零点学习的开集域自适应

Xinyue Zhang, Xu Yang, Zhiyong Liu
{"title":"图上零点学习的开集域自适应","authors":"Xinyue Zhang, Xu Yang, Zhiyong Liu","doi":"10.1145/3603781.3603854","DOIUrl":null,"url":null,"abstract":"Open set domain adaptation focuses on transferring the information from a richly labeled domain called source domain to a scarcely labeled domain called target domain, while classifying the unseen target samples as one unknown class in an unsupervised way. Compared with the close set domain adaptation, where the source domain and the target domain share the same class space, the classification of the unknown class makes it easy to adapt to the real environment. Particularly, after the recognition of the unknown samples, the model can either ask for manually labeling or further develop the classification ability of the unknown classes based on pre-stored knowledge. Inspired by this idea, we propose a model for open set domain adaptation with zero-shot learning on the unknown classes in this paper. We utilize adversarial learning to align the two domains while rejecting the unknown classes. Then the knowledge graph is introduced to generate the classifiers for the unknown classes with the employment of the graph convolution network (GCN). Thus the classification ability of the source domain is transferred to the target domain, and the model can distinguish the unknown classes in detail with prior knowledge. We evaluate our model on digits datasets and the result shows superior performance.","PeriodicalId":391180,"journal":{"name":"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open Set Domain Adaptation with Zero-shot Learning on Graph\",\"authors\":\"Xinyue Zhang, Xu Yang, Zhiyong Liu\",\"doi\":\"10.1145/3603781.3603854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Open set domain adaptation focuses on transferring the information from a richly labeled domain called source domain to a scarcely labeled domain called target domain, while classifying the unseen target samples as one unknown class in an unsupervised way. Compared with the close set domain adaptation, where the source domain and the target domain share the same class space, the classification of the unknown class makes it easy to adapt to the real environment. Particularly, after the recognition of the unknown samples, the model can either ask for manually labeling or further develop the classification ability of the unknown classes based on pre-stored knowledge. Inspired by this idea, we propose a model for open set domain adaptation with zero-shot learning on the unknown classes in this paper. We utilize adversarial learning to align the two domains while rejecting the unknown classes. Then the knowledge graph is introduced to generate the classifiers for the unknown classes with the employment of the graph convolution network (GCN). Thus the classification ability of the source domain is transferred to the target domain, and the model can distinguish the unknown classes in detail with prior knowledge. We evaluate our model on digits datasets and the result shows superior performance.\",\"PeriodicalId\":391180,\"journal\":{\"name\":\"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3603781.3603854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603781.3603854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开放集域自适应的重点是将信息从高标记域(源域)转移到低标记域(目标域),同时以无监督的方式将看不见的目标样本分类为一个未知类。与源域和目标域共享同一类空间的闭集域自适应相比,未知类的分类更容易适应真实环境。特别是在对未知样本进行识别后,模型既可以要求人工标注,也可以基于预先存储的知识进一步开发未知类的分类能力。受此思想的启发,本文提出了一种基于未知类的零次学习的开放集域自适应模型。我们利用对抗性学习来对齐两个域,同时拒绝未知类。然后引入知识图,利用图卷积网络(GCN)生成未知类的分类器。从而将源领域的分类能力转移到目标领域,利用先验知识对未知类别进行详细区分。我们在数字数据集上对我们的模型进行了评估,结果显示了优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Open Set Domain Adaptation with Zero-shot Learning on Graph
Open set domain adaptation focuses on transferring the information from a richly labeled domain called source domain to a scarcely labeled domain called target domain, while classifying the unseen target samples as one unknown class in an unsupervised way. Compared with the close set domain adaptation, where the source domain and the target domain share the same class space, the classification of the unknown class makes it easy to adapt to the real environment. Particularly, after the recognition of the unknown samples, the model can either ask for manually labeling or further develop the classification ability of the unknown classes based on pre-stored knowledge. Inspired by this idea, we propose a model for open set domain adaptation with zero-shot learning on the unknown classes in this paper. We utilize adversarial learning to align the two domains while rejecting the unknown classes. Then the knowledge graph is introduced to generate the classifiers for the unknown classes with the employment of the graph convolution network (GCN). Thus the classification ability of the source domain is transferred to the target domain, and the model can distinguish the unknown classes in detail with prior knowledge. We evaluate our model on digits datasets and the result shows superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信