{"title":"一种基于ATPG技术的逻辑电路动态老化测试模式选择方法","authors":"Xuan Yang, Xiaole Cui, Chao Wang, Chung-Len Lee","doi":"10.1109/ASICON.2013.6811958","DOIUrl":null,"url":null,"abstract":"State transition of nodes in the circuit generates heat which usually needs to be minimized for reliability consideration. In this work, instead, the heat generated is used to burn-in the CUT. A burn-in test pattern selection technique based on the ATPG approach for maximizing the dynamic power of the CUT is proposed. Experimental results show that the technique is effective in selecting the patterns which offer maximal power. It can be applied into the burn-in of logic circuits and SoCs in an energy saving manner.","PeriodicalId":150654,"journal":{"name":"2013 IEEE 10th International Conference on ASIC","volume":"744 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A test pattern selection method for dynamic burn-in of logic circuits based on ATPG technique\",\"authors\":\"Xuan Yang, Xiaole Cui, Chao Wang, Chung-Len Lee\",\"doi\":\"10.1109/ASICON.2013.6811958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State transition of nodes in the circuit generates heat which usually needs to be minimized for reliability consideration. In this work, instead, the heat generated is used to burn-in the CUT. A burn-in test pattern selection technique based on the ATPG approach for maximizing the dynamic power of the CUT is proposed. Experimental results show that the technique is effective in selecting the patterns which offer maximal power. It can be applied into the burn-in of logic circuits and SoCs in an energy saving manner.\",\"PeriodicalId\":150654,\"journal\":{\"name\":\"2013 IEEE 10th International Conference on ASIC\",\"volume\":\"744 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Conference on ASIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASICON.2013.6811958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON.2013.6811958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A test pattern selection method for dynamic burn-in of logic circuits based on ATPG technique
State transition of nodes in the circuit generates heat which usually needs to be minimized for reliability consideration. In this work, instead, the heat generated is used to burn-in the CUT. A burn-in test pattern selection technique based on the ATPG approach for maximizing the dynamic power of the CUT is proposed. Experimental results show that the technique is effective in selecting the patterns which offer maximal power. It can be applied into the burn-in of logic circuits and SoCs in an energy saving manner.