{"title":"模糊神经控制器","authors":"Y. Hayashi, E. Czogala, J. J. Buckley","doi":"10.1109/FUZZY.1992.258617","DOIUrl":null,"url":null,"abstract":"The authors consider a fuzzy controller that processes fuzzy information. They discuss the model of the fuzzy controller, with fuzzy inputs for error and change in error, using a max-min neural network. A new learning algorithm, a modified delta rule, is derived. The generalization property of the neural net can be used to find a controller output for new fuzzy values of error and change in error. An example is presented showing the applicability of the fuzzy neural controller.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"2 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Fuzzy neural controller\",\"authors\":\"Y. Hayashi, E. Czogala, J. J. Buckley\",\"doi\":\"10.1109/FUZZY.1992.258617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors consider a fuzzy controller that processes fuzzy information. They discuss the model of the fuzzy controller, with fuzzy inputs for error and change in error, using a max-min neural network. A new learning algorithm, a modified delta rule, is derived. The generalization property of the neural net can be used to find a controller output for new fuzzy values of error and change in error. An example is presented showing the applicability of the fuzzy neural controller.<<ETX>>\",\"PeriodicalId\":222263,\"journal\":{\"name\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"volume\":\"2 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1992.258617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The authors consider a fuzzy controller that processes fuzzy information. They discuss the model of the fuzzy controller, with fuzzy inputs for error and change in error, using a max-min neural network. A new learning algorithm, a modified delta rule, is derived. The generalization property of the neural net can be used to find a controller output for new fuzzy values of error and change in error. An example is presented showing the applicability of the fuzzy neural controller.<>