主动网络的鲁棒分布状态估计

F. Pilo, G. Pisano, G. G. Soma
{"title":"主动网络的鲁棒分布状态估计","authors":"F. Pilo, G. Pisano, G. G. Soma","doi":"10.1109/UPEC.2008.4651541","DOIUrl":null,"url":null,"abstract":"A heuristic optimization algorithm based on the Dynamic Programming theory is proposed to find the optimal placement of measurement devices, i.e. to determine their number and position. The optimization procedure explicitly considers network reconfigurations (caused by random faults or by the active management of the network), so that the final measurement system allows the distribution state estimation to provide an accurate estimate of the system status in all the possible practical conditions. The branch currents are taken as state variables for improving the quality of the solution of the state estimator that exploits field measurements and load pseudo-measurements. The uncertainties introduced by the measurement chain are simulated with a Monte Carlo algorithm. Variations of both load demand and network parameters are also modeled in the Monte Carlo algorithm. The provided examples show the effectiveness of the optimization process.","PeriodicalId":287461,"journal":{"name":"2008 43rd International Universities Power Engineering Conference","volume":"682 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Robust distribution state estimation for active networks\",\"authors\":\"F. Pilo, G. Pisano, G. G. Soma\",\"doi\":\"10.1109/UPEC.2008.4651541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A heuristic optimization algorithm based on the Dynamic Programming theory is proposed to find the optimal placement of measurement devices, i.e. to determine their number and position. The optimization procedure explicitly considers network reconfigurations (caused by random faults or by the active management of the network), so that the final measurement system allows the distribution state estimation to provide an accurate estimate of the system status in all the possible practical conditions. The branch currents are taken as state variables for improving the quality of the solution of the state estimator that exploits field measurements and load pseudo-measurements. The uncertainties introduced by the measurement chain are simulated with a Monte Carlo algorithm. Variations of both load demand and network parameters are also modeled in the Monte Carlo algorithm. The provided examples show the effectiveness of the optimization process.\",\"PeriodicalId\":287461,\"journal\":{\"name\":\"2008 43rd International Universities Power Engineering Conference\",\"volume\":\"682 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 43rd International Universities Power Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2008.4651541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 43rd International Universities Power Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2008.4651541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于动态规划理论的启发式优化算法,用于寻找测量装置的最优放置位置,即确定测量装置的数量和位置。优化过程明确考虑了网络重构(由随机故障或由网络主动管理引起),因此最终的测量系统允许分布状态估计在所有可能的实际条件下提供系统状态的准确估计。为了提高利用现场测量和负荷伪测量的状态估计器的解的质量,将支路电流作为状态变量。利用蒙特卡罗算法对测量链引入的不确定性进行了模拟。用蒙特卡罗算法对负荷需求和网络参数的变化进行了建模。所提供的实例表明了优化过程的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust distribution state estimation for active networks
A heuristic optimization algorithm based on the Dynamic Programming theory is proposed to find the optimal placement of measurement devices, i.e. to determine their number and position. The optimization procedure explicitly considers network reconfigurations (caused by random faults or by the active management of the network), so that the final measurement system allows the distribution state estimation to provide an accurate estimate of the system status in all the possible practical conditions. The branch currents are taken as state variables for improving the quality of the solution of the state estimator that exploits field measurements and load pseudo-measurements. The uncertainties introduced by the measurement chain are simulated with a Monte Carlo algorithm. Variations of both load demand and network parameters are also modeled in the Monte Carlo algorithm. The provided examples show the effectiveness of the optimization process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信