为听力和语言障碍人士使用机器学习的涂鸦识别

Evangelyn D Monica, Praharsha Davu, Cynthia P Caroline, D. J. Jagannath
{"title":"为听力和语言障碍人士使用机器学习的涂鸦识别","authors":"Evangelyn D Monica, Praharsha Davu, Cynthia P Caroline, D. J. Jagannath","doi":"10.1109/ICSPC46172.2019.8976846","DOIUrl":null,"url":null,"abstract":"In this paper, we test the different classifiers used in machine learning and compare the different accuracies for the doodles which are obtained from Google's Quick Draw Dataset. The classifier with the best accuracy can be fed into an application for the hearing and speech impaired people through which the can be trained to draw their immediate needs, and the machine learning model could classify it into the correct category, so it would be easy for the people nearby to help them.","PeriodicalId":321652,"journal":{"name":"2019 2nd International Conference on Signal Processing and Communication (ICSPC)","volume":"311 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Doodle Recognition using machine learning for hearing and speech-impaired people\",\"authors\":\"Evangelyn D Monica, Praharsha Davu, Cynthia P Caroline, D. J. Jagannath\",\"doi\":\"10.1109/ICSPC46172.2019.8976846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we test the different classifiers used in machine learning and compare the different accuracies for the doodles which are obtained from Google's Quick Draw Dataset. The classifier with the best accuracy can be fed into an application for the hearing and speech impaired people through which the can be trained to draw their immediate needs, and the machine learning model could classify it into the correct category, so it would be easy for the people nearby to help them.\",\"PeriodicalId\":321652,\"journal\":{\"name\":\"2019 2nd International Conference on Signal Processing and Communication (ICSPC)\",\"volume\":\"311 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Signal Processing and Communication (ICSPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPC46172.2019.8976846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Signal Processing and Communication (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPC46172.2019.8976846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们测试了机器学习中使用的不同分类器,并比较了从谷歌快速绘制数据集获得的涂鸦的不同准确率。准确率最高的分类器可以被输入到一个针对听力和语言障碍者的应用程序中,通过这个应用程序可以训练它来绘制他们的即时需求,机器学习模型可以将其分类到正确的类别中,这样附近的人就很容易帮助他们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Doodle Recognition using machine learning for hearing and speech-impaired people
In this paper, we test the different classifiers used in machine learning and compare the different accuracies for the doodles which are obtained from Google's Quick Draw Dataset. The classifier with the best accuracy can be fed into an application for the hearing and speech impaired people through which the can be trained to draw their immediate needs, and the machine learning model could classify it into the correct category, so it would be easy for the people nearby to help them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信