一种基于熵的用户偏好相机位置识别方法

Nicole Marsaglia, Yuya Kawakami, Samuel D. Schwartz, Stefan Fields, H. Childs
{"title":"一种基于熵的用户偏好相机位置识别方法","authors":"Nicole Marsaglia, Yuya Kawakami, Samuel D. Schwartz, Stefan Fields, H. Childs","doi":"10.1109/LDAV53230.2021.00015","DOIUrl":null,"url":null,"abstract":"Viewpoint Quality (VQ) metrics have the potential to predict human preferences for camera placement. With this study, we introduce new VQ metrics that incorporate entropy, and explore how they can be used in combination. Our evaluation involves three phases: (1) creating a database of isosurface imagery from ten large, scientific data sets, (2) conducting a user study with approximately 30 large data visualization experts who provided over 1000 responses, and (3) analyzing how our entropy-based VQ metrics compared with existing VQ metrics in predicting expert preference. In terms of findings, we find that our entropy-based metrics are able to predict expert preferences 68% of the time, while existing VQ metrics perform much worse (52%). This finding, while valuable on its own, also opens the door for future work on in situ camera placement. Finally, as another important contribution, this work has the most extensive evaluation to date of existing VQ metrics to predict expert preference for visualizations of large, scientific data sets.","PeriodicalId":441438,"journal":{"name":"2021 IEEE 11th Symposium on Large Data Analysis and Visualization (LDAV)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Entropy-Based Approach for Identifying User-Preferred Camera Positions\",\"authors\":\"Nicole Marsaglia, Yuya Kawakami, Samuel D. Schwartz, Stefan Fields, H. Childs\",\"doi\":\"10.1109/LDAV53230.2021.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viewpoint Quality (VQ) metrics have the potential to predict human preferences for camera placement. With this study, we introduce new VQ metrics that incorporate entropy, and explore how they can be used in combination. Our evaluation involves three phases: (1) creating a database of isosurface imagery from ten large, scientific data sets, (2) conducting a user study with approximately 30 large data visualization experts who provided over 1000 responses, and (3) analyzing how our entropy-based VQ metrics compared with existing VQ metrics in predicting expert preference. In terms of findings, we find that our entropy-based metrics are able to predict expert preferences 68% of the time, while existing VQ metrics perform much worse (52%). This finding, while valuable on its own, also opens the door for future work on in situ camera placement. Finally, as another important contribution, this work has the most extensive evaluation to date of existing VQ metrics to predict expert preference for visualizations of large, scientific data sets.\",\"PeriodicalId\":441438,\"journal\":{\"name\":\"2021 IEEE 11th Symposium on Large Data Analysis and Visualization (LDAV)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 11th Symposium on Large Data Analysis and Visualization (LDAV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LDAV53230.2021.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th Symposium on Large Data Analysis and Visualization (LDAV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LDAV53230.2021.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

视点质量(VQ)指标有可能预测人类对摄像机放置的偏好。通过这项研究,我们引入了包含熵的新VQ指标,并探索了如何将它们组合使用。我们的评估包括三个阶段:(1)从10个大型科学数据集中创建等面图像数据库;(2)与大约30名大型数据可视化专家进行用户研究,他们提供了1000多个回复;(3)分析我们基于熵的VQ指标与现有VQ指标在预测专家偏好方面的比较。就结果而言,我们发现基于熵的指标能够在68%的时间内预测专家的偏好,而现有的VQ指标表现得更差(52%)。这一发现虽然本身很有价值,但也为未来的原位摄像机安置工作打开了大门。最后,作为另一个重要贡献,这项工作对现有的VQ指标进行了迄今为止最广泛的评估,以预测专家对大型科学数据集可视化的偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Entropy-Based Approach for Identifying User-Preferred Camera Positions
Viewpoint Quality (VQ) metrics have the potential to predict human preferences for camera placement. With this study, we introduce new VQ metrics that incorporate entropy, and explore how they can be used in combination. Our evaluation involves three phases: (1) creating a database of isosurface imagery from ten large, scientific data sets, (2) conducting a user study with approximately 30 large data visualization experts who provided over 1000 responses, and (3) analyzing how our entropy-based VQ metrics compared with existing VQ metrics in predicting expert preference. In terms of findings, we find that our entropy-based metrics are able to predict expert preferences 68% of the time, while existing VQ metrics perform much worse (52%). This finding, while valuable on its own, also opens the door for future work on in situ camera placement. Finally, as another important contribution, this work has the most extensive evaluation to date of existing VQ metrics to predict expert preference for visualizations of large, scientific data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信