根据电池容量建立保护协调系统的必要性

Sin-Dong Kang, Ahran Min, Ye-Jin Park, S. Kim, Jae-Ho Kim
{"title":"根据电池容量建立保护协调系统的必要性","authors":"Sin-Dong Kang, Ahran Min, Ye-Jin Park, S. Kim, Jae-Ho Kim","doi":"10.7731/kifse.59f10ab7","DOIUrl":null,"url":null,"abstract":"As the capacity of lithium-based batteries rapidly is increasing, the number of applications using them is continuously increasing. However, this leads to the risk of fire and explosion, and thus, the number of accidents is increasing. To analyze the magnitude of short circuit currents according to the battery capacity and external circuit impedance and the necessity of protective coordination, this study conducted experiments using cylindrical batteries with capacities of 800, 2200, 3000, and 5000 mAh and cables with an impedance of 0.1Ω/m. Results indicated that as the battery capacity increased, the short circuit current increased and circuit-opening time decreased. However, as the circuit impedance increased, the short circuit current decreased and circuit-opening time increased. Based on these results, we reviewed protective systems applied to batteries and analyzed their problems. For protective systems designed considering the maximum short circuit current, if the state of charge is low or the impedance is high at the point of short circuit, the protective system does not operate when short circuit occurs, thus failing to block the circuit and potentially leading to fire. Therefore, while designing protective systems, it is appropriate to use multiple circuit breakers and fuses, considering the short circuit current according to the battery capacity and circuit impedance to enable protective coordination between devices.","PeriodicalId":225639,"journal":{"name":"International Journal of Fire Science and Engineering","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Necessity of Protective Coordination Systems According to Battery Capacity\",\"authors\":\"Sin-Dong Kang, Ahran Min, Ye-Jin Park, S. Kim, Jae-Ho Kim\",\"doi\":\"10.7731/kifse.59f10ab7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the capacity of lithium-based batteries rapidly is increasing, the number of applications using them is continuously increasing. However, this leads to the risk of fire and explosion, and thus, the number of accidents is increasing. To analyze the magnitude of short circuit currents according to the battery capacity and external circuit impedance and the necessity of protective coordination, this study conducted experiments using cylindrical batteries with capacities of 800, 2200, 3000, and 5000 mAh and cables with an impedance of 0.1Ω/m. Results indicated that as the battery capacity increased, the short circuit current increased and circuit-opening time decreased. However, as the circuit impedance increased, the short circuit current decreased and circuit-opening time increased. Based on these results, we reviewed protective systems applied to batteries and analyzed their problems. For protective systems designed considering the maximum short circuit current, if the state of charge is low or the impedance is high at the point of short circuit, the protective system does not operate when short circuit occurs, thus failing to block the circuit and potentially leading to fire. Therefore, while designing protective systems, it is appropriate to use multiple circuit breakers and fuses, considering the short circuit current according to the battery capacity and circuit impedance to enable protective coordination between devices.\",\"PeriodicalId\":225639,\"journal\":{\"name\":\"International Journal of Fire Science and Engineering\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fire Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7731/kifse.59f10ab7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fire Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7731/kifse.59f10ab7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着锂基电池容量的快速增长,使用锂基电池的应用也在不断增加。然而,这导致了火灾和爆炸的危险,因此,事故的数量正在增加。为了根据电池容量和外路阻抗分析短路电流的大小以及保护配合的必要性,本研究采用容量分别为800、2200、3000、5000 mAh的圆柱电池和阻抗为0.1Ω/m的电缆进行了实验。结果表明,随着电池容量的增大,短路电流增大,开路时间减小。但随着电路阻抗的增大,短路电流减小,电路开断时间增加。基于这些结果,我们回顾了应用于电池的保护系统,并分析了它们存在的问题。对于考虑最大短路电流设计的保护系统,如果在短路点电荷状态低或阻抗高,则在发生短路时保护系统不动作,不能阻塞电路,有可能导致火灾。因此,在设计保护系统时,宜采用多个断路器和熔断器,根据电池容量和电路阻抗考虑短路电流,使设备之间的保护协调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Necessity of Protective Coordination Systems According to Battery Capacity
As the capacity of lithium-based batteries rapidly is increasing, the number of applications using them is continuously increasing. However, this leads to the risk of fire and explosion, and thus, the number of accidents is increasing. To analyze the magnitude of short circuit currents according to the battery capacity and external circuit impedance and the necessity of protective coordination, this study conducted experiments using cylindrical batteries with capacities of 800, 2200, 3000, and 5000 mAh and cables with an impedance of 0.1Ω/m. Results indicated that as the battery capacity increased, the short circuit current increased and circuit-opening time decreased. However, as the circuit impedance increased, the short circuit current decreased and circuit-opening time increased. Based on these results, we reviewed protective systems applied to batteries and analyzed their problems. For protective systems designed considering the maximum short circuit current, if the state of charge is low or the impedance is high at the point of short circuit, the protective system does not operate when short circuit occurs, thus failing to block the circuit and potentially leading to fire. Therefore, while designing protective systems, it is appropriate to use multiple circuit breakers and fuses, considering the short circuit current according to the battery capacity and circuit impedance to enable protective coordination between devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信