基于高速神经网络的儿科呼吸系统疾病快速诊断

H. El-Bakry, Mohamed Hamada
{"title":"基于高速神经网络的儿科呼吸系统疾病快速诊断","authors":"H. El-Bakry, Mohamed Hamada","doi":"10.1109/IJCNN.2013.6707116","DOIUrl":null,"url":null,"abstract":"In this paper, a new fast neural model for testing massive volume of medical data is presented. The idea is to accelerate the process of detecting and classifying pediatric respiratory diseases by using neural networks. This is done by applying cross correlation between the input patterns and the input weights of neural networks in the frequency domain rather than time domain. Furthermore, such model is very useful for understanding the internal relation between the medical patterns. In addition, the input patterns are collected in one vector and manipulated as a one pattern. Moreover, before training neural networks, rough sets are used to reduce the length of the feature input vector. The most important feature elements are used to train the neural networks. The reduced input medical patterns are classified to one of eight diseases. Simulation results confirm the theoretical considerations as 98% of all tested cases are classified correctly. The presented model can be applied successfully for any other classification application.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast diagnosing of pediatric respiratory diseases by using high speed neural networks\",\"authors\":\"H. El-Bakry, Mohamed Hamada\",\"doi\":\"10.1109/IJCNN.2013.6707116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new fast neural model for testing massive volume of medical data is presented. The idea is to accelerate the process of detecting and classifying pediatric respiratory diseases by using neural networks. This is done by applying cross correlation between the input patterns and the input weights of neural networks in the frequency domain rather than time domain. Furthermore, such model is very useful for understanding the internal relation between the medical patterns. In addition, the input patterns are collected in one vector and manipulated as a one pattern. Moreover, before training neural networks, rough sets are used to reduce the length of the feature input vector. The most important feature elements are used to train the neural networks. The reduced input medical patterns are classified to one of eight diseases. Simulation results confirm the theoretical considerations as 98% of all tested cases are classified correctly. The presented model can be applied successfully for any other classification application.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6707116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6707116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的用于海量医学数据检测的快速神经网络模型。这个想法是通过使用神经网络来加速小儿呼吸系统疾病的检测和分类过程。这是通过在频域而不是时域应用神经网络的输入模式和输入权重之间的相互关联来完成的。此外,该模型对于理解医学模式之间的内在联系非常有用。此外,输入模式被收集在一个向量和操作作为一个模式。此外,在训练神经网络之前,使用粗糙集来减少特征输入向量的长度。最重要的特征元素被用来训练神经网络。减少投入的医疗模式被分类为八种疾病之一。仿真结果证实了理论考虑,98%的测试用例被正确分类。所提出的模型可以成功地应用于任何其他分类应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast diagnosing of pediatric respiratory diseases by using high speed neural networks
In this paper, a new fast neural model for testing massive volume of medical data is presented. The idea is to accelerate the process of detecting and classifying pediatric respiratory diseases by using neural networks. This is done by applying cross correlation between the input patterns and the input weights of neural networks in the frequency domain rather than time domain. Furthermore, such model is very useful for understanding the internal relation between the medical patterns. In addition, the input patterns are collected in one vector and manipulated as a one pattern. Moreover, before training neural networks, rough sets are used to reduce the length of the feature input vector. The most important feature elements are used to train the neural networks. The reduced input medical patterns are classified to one of eight diseases. Simulation results confirm the theoretical considerations as 98% of all tested cases are classified correctly. The presented model can be applied successfully for any other classification application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信