一阶自治ode的实系数或有理系数Puiseux级数解

Sebastian Falkensteiner
{"title":"一阶自治ode的实系数或有理系数Puiseux级数解","authors":"Sebastian Falkensteiner","doi":"10.1145/3476446.3536185","DOIUrl":null,"url":null,"abstract":"Given an autonomous first order algebraic ordinary differential equation $F(y,y')=0$, we provide algorithms for computing formal Puiseux series solutions of $F(y,y')=0$ with real or rational coefficients. For this purpose we give necessary and sufficient conditions on the existence of such solutions by combining classical methods from algebraic geometry and the study of an associated differential equation. Since all formal Puiseux series solutions of such differential equations are convergent in a certain neighborhood, the solutions also define real solution functions.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Puiseux Series Solutions with Real or Rational Coefficients of First Order Autonomous AODEs\",\"authors\":\"Sebastian Falkensteiner\",\"doi\":\"10.1145/3476446.3536185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an autonomous first order algebraic ordinary differential equation $F(y,y')=0$, we provide algorithms for computing formal Puiseux series solutions of $F(y,y')=0$ with real or rational coefficients. For this purpose we give necessary and sufficient conditions on the existence of such solutions by combining classical methods from algebraic geometry and the study of an associated differential equation. Since all formal Puiseux series solutions of such differential equations are convergent in a certain neighborhood, the solutions also define real solution functions.\",\"PeriodicalId\":130499,\"journal\":{\"name\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476446.3536185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3536185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一阶自治代数常微分方程$F(y,y')=0$,给出了具有实数或有理数系数的$F(y,y')=0$的形式Puiseux级数解的计算算法。为此,我们结合代数几何的经典方法和相关微分方程的研究,给出了此类解存在的充分必要条件。由于这类微分方程的所有形式的Puiseux级数解在某一邻域内收敛,所以解也定义了实解函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Puiseux Series Solutions with Real or Rational Coefficients of First Order Autonomous AODEs
Given an autonomous first order algebraic ordinary differential equation $F(y,y')=0$, we provide algorithms for computing formal Puiseux series solutions of $F(y,y')=0$ with real or rational coefficients. For this purpose we give necessary and sufficient conditions on the existence of such solutions by combining classical methods from algebraic geometry and the study of an associated differential equation. Since all formal Puiseux series solutions of such differential equations are convergent in a certain neighborhood, the solutions also define real solution functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信