模糊多智能体协同q学习

Dongbing Gu, Huosheng Hu
{"title":"模糊多智能体协同q学习","authors":"Dongbing Gu, Huosheng Hu","doi":"10.1109/ICIA.2005.1635080","DOIUrl":null,"url":null,"abstract":"This paper presents a cooperative reinforcement learning algorithm of multi-agent systems. The cooperative behaviour is established within a leader-following framework. Specifically, the cooperative dynamics is modelled as a Stackelberg game. Based on the equilibrium definition of the Stackelberg game, a leader-following Q-learning algorithm is developed. The algorithm is generalised over continuous state space by using fuzzy logic.","PeriodicalId":136611,"journal":{"name":"2005 IEEE International Conference on Information Acquisition","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fuzzy multi-agent cooperative Q-learning\",\"authors\":\"Dongbing Gu, Huosheng Hu\",\"doi\":\"10.1109/ICIA.2005.1635080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a cooperative reinforcement learning algorithm of multi-agent systems. The cooperative behaviour is established within a leader-following framework. Specifically, the cooperative dynamics is modelled as a Stackelberg game. Based on the equilibrium definition of the Stackelberg game, a leader-following Q-learning algorithm is developed. The algorithm is generalised over continuous state space by using fuzzy logic.\",\"PeriodicalId\":136611,\"journal\":{\"name\":\"2005 IEEE International Conference on Information Acquisition\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Conference on Information Acquisition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIA.2005.1635080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Information Acquisition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2005.1635080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种多智能体系统的协同强化学习算法。合作行为是在领导跟随框架内建立起来的。具体来说,合作动力学被建模为Stackelberg博弈。基于Stackelberg博弈的均衡定义,提出了一种领导者跟随q学习算法。该算法利用模糊逻辑在连续状态空间上进行推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy multi-agent cooperative Q-learning
This paper presents a cooperative reinforcement learning algorithm of multi-agent systems. The cooperative behaviour is established within a leader-following framework. Specifically, the cooperative dynamics is modelled as a Stackelberg game. Based on the equilibrium definition of the Stackelberg game, a leader-following Q-learning algorithm is developed. The algorithm is generalised over continuous state space by using fuzzy logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信