协同半结构化对等网络中基于聚类的查询路由

Rami Suleiman Alkhawaldeh, J. Jose, P Deepak
{"title":"协同半结构化对等网络中基于聚类的查询路由","authors":"Rami Suleiman Alkhawaldeh, J. Jose, P Deepak","doi":"10.1109/ICTAI.2016.0064","DOIUrl":null,"url":null,"abstract":"We consider the problem of resource selection in clustered Peer-to-Peer Information Retrieval (P2P IR) networks with cooperative peers. The clustered P2P IR framework presents a significant departure from general P2P IR architectures by employing clustering to ensure content coherence between resources at the resource selection layer, without disturbing document allocation. We propose that such a property could be leveraged in resource selection by adapting well-studied and popular inverted lists for centralized document retrieval. Accordingly, we propose the Inverted PeerCluster Index (IPI), an approach that adapts the inverted lists, in a straightforward manner, for resource selection in clustered P2P IR. IPI also encompasses a strikingly simple peer-specific scoring mechanism that exploits the said index for resource selection. Through an extensive empirical analysis on P2P IR testbeds, we establish that IPI competes well with the sophisticated state-of-the-art methods in virtually every parameter of interest for the resource selection task, in the context of clustered P2P IR.","PeriodicalId":245697,"journal":{"name":"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustering-Based Query Routing in Cooperative Semi-Structured Peer to Peer Networks\",\"authors\":\"Rami Suleiman Alkhawaldeh, J. Jose, P Deepak\",\"doi\":\"10.1109/ICTAI.2016.0064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of resource selection in clustered Peer-to-Peer Information Retrieval (P2P IR) networks with cooperative peers. The clustered P2P IR framework presents a significant departure from general P2P IR architectures by employing clustering to ensure content coherence between resources at the resource selection layer, without disturbing document allocation. We propose that such a property could be leveraged in resource selection by adapting well-studied and popular inverted lists for centralized document retrieval. Accordingly, we propose the Inverted PeerCluster Index (IPI), an approach that adapts the inverted lists, in a straightforward manner, for resource selection in clustered P2P IR. IPI also encompasses a strikingly simple peer-specific scoring mechanism that exploits the said index for resource selection. Through an extensive empirical analysis on P2P IR testbeds, we establish that IPI competes well with the sophisticated state-of-the-art methods in virtually every parameter of interest for the resource selection task, in the context of clustered P2P IR.\",\"PeriodicalId\":245697,\"journal\":{\"name\":\"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2016.0064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2016.0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究具有合作节点的集群点对点信息检索(P2P IR)网络中的资源选择问题。集群P2P IR框架通过在资源选择层使用集群来确保资源之间的内容一致性,而不会干扰文档分配,从而与一般的P2P IR架构有很大的不同。我们建议在资源选择中利用这种特性,通过采用经过充分研究和流行的倒排列表进行集中文档检索。因此,我们提出了反向PeerCluster索引(IPI),这是一种适应倒排列表的方法,以一种直接的方式,用于集群P2P IR中的资源选择。IPI还包含一个非常简单的特定于同行的评分机制,该机制利用上述索引进行资源选择。通过对P2P IR测试平台的广泛实证分析,我们确定在集群P2P IR的背景下,在资源选择任务的几乎每个感兴趣的参数中,IPI与先进的最先进的方法竞争得很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering-Based Query Routing in Cooperative Semi-Structured Peer to Peer Networks
We consider the problem of resource selection in clustered Peer-to-Peer Information Retrieval (P2P IR) networks with cooperative peers. The clustered P2P IR framework presents a significant departure from general P2P IR architectures by employing clustering to ensure content coherence between resources at the resource selection layer, without disturbing document allocation. We propose that such a property could be leveraged in resource selection by adapting well-studied and popular inverted lists for centralized document retrieval. Accordingly, we propose the Inverted PeerCluster Index (IPI), an approach that adapts the inverted lists, in a straightforward manner, for resource selection in clustered P2P IR. IPI also encompasses a strikingly simple peer-specific scoring mechanism that exploits the said index for resource selection. Through an extensive empirical analysis on P2P IR testbeds, we establish that IPI competes well with the sophisticated state-of-the-art methods in virtually every parameter of interest for the resource selection task, in the context of clustered P2P IR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信