连续随机数

R. Swendsen
{"title":"连续随机数","authors":"R. Swendsen","doi":"10.1093/acprof:oso/9780199646944.003.0005","DOIUrl":null,"url":null,"abstract":"The theory of probability developed in Chapter 3 for discrete random variables is extended to probability distributions, in order to treat the continuous momentum variables. The Dirac delta function is introduced as a convenient tool to transform continuous random variables, in analogy with the use of the Kronecker delta for discrete random variables. The properties of the Dirac delta function that are needed in statistical mechanics are presented and explained. The addition of two continuous random numbers is given as a simple example. An application of Bayesian probability is given to illustrate its significance. However, the components of the momenta of the particles in an ideal gas are continuous variables.","PeriodicalId":102491,"journal":{"name":"An Introduction to Statistical Mechanics and Thermodynamics","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous Random Numbers\",\"authors\":\"R. Swendsen\",\"doi\":\"10.1093/acprof:oso/9780199646944.003.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of probability developed in Chapter 3 for discrete random variables is extended to probability distributions, in order to treat the continuous momentum variables. The Dirac delta function is introduced as a convenient tool to transform continuous random variables, in analogy with the use of the Kronecker delta for discrete random variables. The properties of the Dirac delta function that are needed in statistical mechanics are presented and explained. The addition of two continuous random numbers is given as a simple example. An application of Bayesian probability is given to illustrate its significance. However, the components of the momenta of the particles in an ideal gas are continuous variables.\",\"PeriodicalId\":102491,\"journal\":{\"name\":\"An Introduction to Statistical Mechanics and Thermodynamics\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"An Introduction to Statistical Mechanics and Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/acprof:oso/9780199646944.003.0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"An Introduction to Statistical Mechanics and Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/acprof:oso/9780199646944.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了处理连续动量变量,我们将第三章中关于离散随机变量的概率论推广到概率分布。引入狄拉克函数作为变换连续随机变量的方便工具,类似于离散随机变量的克罗内克函数。介绍并解释了统计力学中需要用到的狄拉克函数的性质。给出了两个连续随机数相加的简单例子。给出贝叶斯概率的一个应用来说明它的意义。然而,理想气体中粒子的动量分量是连续变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous Random Numbers
The theory of probability developed in Chapter 3 for discrete random variables is extended to probability distributions, in order to treat the continuous momentum variables. The Dirac delta function is introduced as a convenient tool to transform continuous random variables, in analogy with the use of the Kronecker delta for discrete random variables. The properties of the Dirac delta function that are needed in statistical mechanics are presented and explained. The addition of two continuous random numbers is given as a simple example. An application of Bayesian probability is given to illustrate its significance. However, the components of the momenta of the particles in an ideal gas are continuous variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信