人类情感的动态神经网络方法:基于滑动时间窗的分析

Jingqiu Wang, Gen Shi, N. Ma, Yang Sun, Xia Li, J. Sui
{"title":"人类情感的动态神经网络方法:基于滑动时间窗的分析","authors":"Jingqiu Wang, Gen Shi, N. Ma, Yang Sun, Xia Li, J. Sui","doi":"10.1109/ICCICC53683.2021.9811310","DOIUrl":null,"url":null,"abstract":"Emotion is a key motivational factor of a person strivings for health and well-being. Understanding neural networks supporting different types of emotion bears far-reaching implications for mental health. Recent studies suggest that emotional processing is associated with a large number of brain regions. However, the precise functional connectivity (FC) of these regions in investigations of emotional processing are largely unknown. To address this issue, we recruited 359 participants who completed emotional-related measures including the Positive and Negative Affect Schedule (PANAS) the Self-Compassion Scale, while scanned with resting-state functional magnetic resonance images (fMRI). Here, we proposed a novel psychological characteristics analysis framework by using a dynamic sliding window method to characterize the nature of resting-state functional connectivity in the human brain, in relation to the static FC method. The comparison results showed that the dynamic FC method produced the better performance, compared to the static FC method. The global network analyses across all 6 possible connectivity matrices further demonstrated that the dynamically hemispheric asymmetry best predicted emotional processing. The dynamic FC method was evaluated on the three emotional labels - positive emotion, negative emotion, self-compassion and the best prediction performance was consistently observed in the dynamically hemispheric asymmetric FC.","PeriodicalId":101653,"journal":{"name":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic neural network approach to human emotion: an analysis based on sliding time windows\",\"authors\":\"Jingqiu Wang, Gen Shi, N. Ma, Yang Sun, Xia Li, J. Sui\",\"doi\":\"10.1109/ICCICC53683.2021.9811310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion is a key motivational factor of a person strivings for health and well-being. Understanding neural networks supporting different types of emotion bears far-reaching implications for mental health. Recent studies suggest that emotional processing is associated with a large number of brain regions. However, the precise functional connectivity (FC) of these regions in investigations of emotional processing are largely unknown. To address this issue, we recruited 359 participants who completed emotional-related measures including the Positive and Negative Affect Schedule (PANAS) the Self-Compassion Scale, while scanned with resting-state functional magnetic resonance images (fMRI). Here, we proposed a novel psychological characteristics analysis framework by using a dynamic sliding window method to characterize the nature of resting-state functional connectivity in the human brain, in relation to the static FC method. The comparison results showed that the dynamic FC method produced the better performance, compared to the static FC method. The global network analyses across all 6 possible connectivity matrices further demonstrated that the dynamically hemispheric asymmetry best predicted emotional processing. The dynamic FC method was evaluated on the three emotional labels - positive emotion, negative emotion, self-compassion and the best prediction performance was consistently observed in the dynamically hemispheric asymmetric FC.\",\"PeriodicalId\":101653,\"journal\":{\"name\":\"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICC53683.2021.9811310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC53683.2021.9811310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感是一个人追求健康和幸福的关键动力因素。理解支持不同类型情绪的神经网络对心理健康有着深远的影响。最近的研究表明,情绪处理与大量的大脑区域有关。然而,这些区域在情绪处理研究中的精确功能连接(FC)在很大程度上是未知的。为了解决这一问题,我们招募了359名参与者,他们完成了情绪相关的测量,包括积极和消极影响量表(PANAS)和自我同情量表,同时使用静息状态功能磁共振图像(fMRI)进行扫描。在此,我们提出了一种新的心理特征分析框架,使用动态滑动窗口方法来表征人脑静息状态功能连接的性质,相对于静态FC方法。对比结果表明,动态FC方法比静态FC方法具有更好的性能。对所有6种可能的连接矩阵的全球网络分析进一步表明,动态半球不对称最能预测情绪处理。动态FC方法在积极情绪、消极情绪和自我同情三个情绪标签上进行了评价,动态半球不对称FC预测效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic neural network approach to human emotion: an analysis based on sliding time windows
Emotion is a key motivational factor of a person strivings for health and well-being. Understanding neural networks supporting different types of emotion bears far-reaching implications for mental health. Recent studies suggest that emotional processing is associated with a large number of brain regions. However, the precise functional connectivity (FC) of these regions in investigations of emotional processing are largely unknown. To address this issue, we recruited 359 participants who completed emotional-related measures including the Positive and Negative Affect Schedule (PANAS) the Self-Compassion Scale, while scanned with resting-state functional magnetic resonance images (fMRI). Here, we proposed a novel psychological characteristics analysis framework by using a dynamic sliding window method to characterize the nature of resting-state functional connectivity in the human brain, in relation to the static FC method. The comparison results showed that the dynamic FC method produced the better performance, compared to the static FC method. The global network analyses across all 6 possible connectivity matrices further demonstrated that the dynamically hemispheric asymmetry best predicted emotional processing. The dynamic FC method was evaluated on the three emotional labels - positive emotion, negative emotion, self-compassion and the best prediction performance was consistently observed in the dynamically hemispheric asymmetric FC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信