{"title":"自动驾驶的偏航速率控制器调谐:虚拟内模型调谐方法","authors":"Motoya Suzuki, S. Yahagi","doi":"10.20965/jrm.2023.p0308","DOIUrl":null,"url":null,"abstract":"Vehicle yaw-rate control is important for realizing autonomous driving. If the desired yaw-rate response is realized, good autonomous driving can be realized. The gain-scheduled controller should be designed because vehicle has time-variant properties. However, it is difficult to design gain-scheduled controller in the case where vehicle parameters are unknown. To solve this problem, we expand virtual internal model tuning (VIMT) so as to realize desired yaw-rate responses. VIMT can tune the feedback controller by using one-shot experiment data. The processing cost is extremely low because the controller parameter can be obtained by using least square methods. In this study, we verify the validity of the proposed method through vehicle simulator of TruckMaker.","PeriodicalId":178614,"journal":{"name":"J. Robotics Mechatronics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yaw-Rate Controller Tuning for Autonomous Driving: Virtual Internal Model Tuning Approach\",\"authors\":\"Motoya Suzuki, S. Yahagi\",\"doi\":\"10.20965/jrm.2023.p0308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle yaw-rate control is important for realizing autonomous driving. If the desired yaw-rate response is realized, good autonomous driving can be realized. The gain-scheduled controller should be designed because vehicle has time-variant properties. However, it is difficult to design gain-scheduled controller in the case where vehicle parameters are unknown. To solve this problem, we expand virtual internal model tuning (VIMT) so as to realize desired yaw-rate responses. VIMT can tune the feedback controller by using one-shot experiment data. The processing cost is extremely low because the controller parameter can be obtained by using least square methods. In this study, we verify the validity of the proposed method through vehicle simulator of TruckMaker.\",\"PeriodicalId\":178614,\"journal\":{\"name\":\"J. Robotics Mechatronics\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Robotics Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2023.p0308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Robotics Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p0308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Yaw-Rate Controller Tuning for Autonomous Driving: Virtual Internal Model Tuning Approach
Vehicle yaw-rate control is important for realizing autonomous driving. If the desired yaw-rate response is realized, good autonomous driving can be realized. The gain-scheduled controller should be designed because vehicle has time-variant properties. However, it is difficult to design gain-scheduled controller in the case where vehicle parameters are unknown. To solve this problem, we expand virtual internal model tuning (VIMT) so as to realize desired yaw-rate responses. VIMT can tune the feedback controller by using one-shot experiment data. The processing cost is extremely low because the controller parameter can be obtained by using least square methods. In this study, we verify the validity of the proposed method through vehicle simulator of TruckMaker.