基于去除背景的长期点轨迹分析的视频动作识别

Yuze Xiang, Y. Okada, Kosuke Kaneko
{"title":"基于去除背景的长期点轨迹分析的视频动作识别","authors":"Yuze Xiang, Y. Okada, Kosuke Kaneko","doi":"10.1109/SITIS.2016.13","DOIUrl":null,"url":null,"abstract":"Recently, dense trajectories were shown to be an efficient video motion representation for action recognition and achieved state-of-the-art results on a variety of video datasets. This paper improves their performance by taking into account camera motion. To estimate camera motion, the authors use long-term point trajectory analysis to cluster image points and propose an algorithm to find possible background cluster from these clusters according to background nature in a video. Considering the original clusters could not segment the foreground and background very well. The authors optimize the background cluster, and use the cluster to rectify the trajectory. Experimental results on three challenging action datasets (i.e., Hollywood2, Olympic Sports and UCF50) show that the rectified trajectories significantly outperform original dense trajectories.","PeriodicalId":403704,"journal":{"name":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Action Recognition for Videos by Long-Term Point Trajectory Analysis with Background Removal\",\"authors\":\"Yuze Xiang, Y. Okada, Kosuke Kaneko\",\"doi\":\"10.1109/SITIS.2016.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, dense trajectories were shown to be an efficient video motion representation for action recognition and achieved state-of-the-art results on a variety of video datasets. This paper improves their performance by taking into account camera motion. To estimate camera motion, the authors use long-term point trajectory analysis to cluster image points and propose an algorithm to find possible background cluster from these clusters according to background nature in a video. Considering the original clusters could not segment the foreground and background very well. The authors optimize the background cluster, and use the cluster to rectify the trajectory. Experimental results on three challenging action datasets (i.e., Hollywood2, Olympic Sports and UCF50) show that the rectified trajectories significantly outperform original dense trajectories.\",\"PeriodicalId\":403704,\"journal\":{\"name\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2016.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2016.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

最近,密集轨迹被证明是一种有效的动作识别视频运动表示,并在各种视频数据集上取得了最先进的结果。本文通过考虑摄像机运动来提高它们的性能。为了估计摄像机的运动,作者使用长期点轨迹分析对图像点进行聚类,并提出了一种根据视频背景性质从这些聚类中找到可能的背景聚类的算法。考虑到原有的聚类不能很好地分割前景和背景。对背景聚类进行了优化,并利用聚类对轨迹进行了校正。在三个具有挑战性的动作数据集(即Hollywood2, Olympic Sports和UCF50)上的实验结果表明,修正后的轨迹显著优于原始密集轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Action Recognition for Videos by Long-Term Point Trajectory Analysis with Background Removal
Recently, dense trajectories were shown to be an efficient video motion representation for action recognition and achieved state-of-the-art results on a variety of video datasets. This paper improves their performance by taking into account camera motion. To estimate camera motion, the authors use long-term point trajectory analysis to cluster image points and propose an algorithm to find possible background cluster from these clusters according to background nature in a video. Considering the original clusters could not segment the foreground and background very well. The authors optimize the background cluster, and use the cluster to rectify the trajectory. Experimental results on three challenging action datasets (i.e., Hollywood2, Olympic Sports and UCF50) show that the rectified trajectories significantly outperform original dense trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信