由Riemann-Liouville分数积分不等式讨论hardy型不等式

B. Benaissa
{"title":"由Riemann-Liouville分数积分不等式讨论hardy型不等式","authors":"B. Benaissa","doi":"10.20948/mathmontis-2022-53-2","DOIUrl":null,"url":null,"abstract":"In this paper, we have shown that in the article entitled “New Riemann-Liouville generalizations for some inequalities of Hardy type” the Theorem 3.3 is false and that a necessary condition on the order α must be in Theorem 3.1 and Theorem 3.2. Additionally, the correct Theorem 3.3 and a new result with negative parameter are given; these results will prove using the Hölder inequality, and reverse Hölder inequality.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"695 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discussions on Hardy-type inequalities via Riemann-Liouville fractional integral inequality\",\"authors\":\"B. Benaissa\",\"doi\":\"10.20948/mathmontis-2022-53-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have shown that in the article entitled “New Riemann-Liouville generalizations for some inequalities of Hardy type” the Theorem 3.3 is false and that a necessary condition on the order α must be in Theorem 3.1 and Theorem 3.2. Additionally, the correct Theorem 3.3 and a new result with negative parameter are given; these results will prove using the Hölder inequality, and reverse Hölder inequality.\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"695 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/mathmontis-2022-53-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/mathmontis-2022-53-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在“Hardy型不等式的新Riemann-Liouville推广”一文中,我们证明了定理3.3是假的,并且定理3.1和定理3.2中必须有α阶的必要条件。此外,给出了正确的3.3定理和一个带负参数的新结果;这些结果将证明使用Hölder不等式,并反转Hölder不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discussions on Hardy-type inequalities via Riemann-Liouville fractional integral inequality
In this paper, we have shown that in the article entitled “New Riemann-Liouville generalizations for some inequalities of Hardy type” the Theorem 3.3 is false and that a necessary condition on the order α must be in Theorem 3.1 and Theorem 3.2. Additionally, the correct Theorem 3.3 and a new result with negative parameter are given; these results will prove using the Hölder inequality, and reverse Hölder inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信