{"title":"由Riemann-Liouville分数积分不等式讨论hardy型不等式","authors":"B. Benaissa","doi":"10.20948/mathmontis-2022-53-2","DOIUrl":null,"url":null,"abstract":"In this paper, we have shown that in the article entitled “New Riemann-Liouville generalizations for some inequalities of Hardy type” the Theorem 3.3 is false and that a necessary condition on the order α must be in Theorem 3.1 and Theorem 3.2. Additionally, the correct Theorem 3.3 and a new result with negative parameter are given; these results will prove using the Hölder inequality, and reverse Hölder inequality.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"695 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discussions on Hardy-type inequalities via Riemann-Liouville fractional integral inequality\",\"authors\":\"B. Benaissa\",\"doi\":\"10.20948/mathmontis-2022-53-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have shown that in the article entitled “New Riemann-Liouville generalizations for some inequalities of Hardy type” the Theorem 3.3 is false and that a necessary condition on the order α must be in Theorem 3.1 and Theorem 3.2. Additionally, the correct Theorem 3.3 and a new result with negative parameter are given; these results will prove using the Hölder inequality, and reverse Hölder inequality.\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"695 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/mathmontis-2022-53-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/mathmontis-2022-53-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discussions on Hardy-type inequalities via Riemann-Liouville fractional integral inequality
In this paper, we have shown that in the article entitled “New Riemann-Liouville generalizations for some inequalities of Hardy type” the Theorem 3.3 is false and that a necessary condition on the order α must be in Theorem 3.1 and Theorem 3.2. Additionally, the correct Theorem 3.3 and a new result with negative parameter are given; these results will prove using the Hölder inequality, and reverse Hölder inequality.