{"title":"求解大规模二元二次问题:谱方法与半定规划","authors":"Carl Olsson, Anders P. Eriksson, Fredrik Kahl","doi":"10.1109/CVPR.2007.383202","DOIUrl":null,"url":null,"abstract":"In this paper we introduce two new methods for solving binary quadratic problems. While spectral relaxation methods have been the workhorse subroutine for a wide variety of computer vision problems - segmentation, clustering, image restoration to name a few - it has recently been challenged by semidefinite programming (SDP) relaxations. In fact, it can be shown that SDP relaxations produce better lower bounds than spectral relaxations on binary problems with a quadratic objective function. On the other hand, the computational complexity for SDP increases rapidly as the number of decision variables grows making them inapplicable to large scale problems. Our methods combine the merits of both spectral and SDP relaxations -better (lower) bounds than traditional spectral methods and considerably faster execution times than SDP. The first method is based on spectral subgradients and can be applied to large scale SDPs with binary decision variables and the second one is based on the trust region problem. Both algorithms have been applied to several large scale vision problems with good performance.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Solving Large Scale Binary Quadratic Problems: Spectral Methods vs. Semidefinite Programming\",\"authors\":\"Carl Olsson, Anders P. Eriksson, Fredrik Kahl\",\"doi\":\"10.1109/CVPR.2007.383202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce two new methods for solving binary quadratic problems. While spectral relaxation methods have been the workhorse subroutine for a wide variety of computer vision problems - segmentation, clustering, image restoration to name a few - it has recently been challenged by semidefinite programming (SDP) relaxations. In fact, it can be shown that SDP relaxations produce better lower bounds than spectral relaxations on binary problems with a quadratic objective function. On the other hand, the computational complexity for SDP increases rapidly as the number of decision variables grows making them inapplicable to large scale problems. Our methods combine the merits of both spectral and SDP relaxations -better (lower) bounds than traditional spectral methods and considerably faster execution times than SDP. The first method is based on spectral subgradients and can be applied to large scale SDPs with binary decision variables and the second one is based on the trust region problem. Both algorithms have been applied to several large scale vision problems with good performance.\",\"PeriodicalId\":351008,\"journal\":{\"name\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"284 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2007.383202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving Large Scale Binary Quadratic Problems: Spectral Methods vs. Semidefinite Programming
In this paper we introduce two new methods for solving binary quadratic problems. While spectral relaxation methods have been the workhorse subroutine for a wide variety of computer vision problems - segmentation, clustering, image restoration to name a few - it has recently been challenged by semidefinite programming (SDP) relaxations. In fact, it can be shown that SDP relaxations produce better lower bounds than spectral relaxations on binary problems with a quadratic objective function. On the other hand, the computational complexity for SDP increases rapidly as the number of decision variables grows making them inapplicable to large scale problems. Our methods combine the merits of both spectral and SDP relaxations -better (lower) bounds than traditional spectral methods and considerably faster execution times than SDP. The first method is based on spectral subgradients and can be applied to large scale SDPs with binary decision variables and the second one is based on the trust region problem. Both algorithms have been applied to several large scale vision problems with good performance.