{"title":"汽车通信网络用二氧化硅光纤的强度和可靠性","authors":"Eric A. Lindholm, E. Warych, Daniel Whelan","doi":"10.1117/12.596915","DOIUrl":null,"url":null,"abstract":"Demand for new safety, sensor, control, information and entertainment technologies in automobiles is stretching the data rate limits of communication networks using conventional wiring and plastic-based fibers. Thus far, the switch to high-bandwidth glass optical fibers has been hindered by concerns about the fiber’s reliability. In this study, we present zero-stress aging data for glass optical fibers with different protective coatings exposed to environmental conditions relevant to the automotive industry.","PeriodicalId":362599,"journal":{"name":"European Workshop on Photonics in the Automobile","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Strength and reliability of silica optical fibers for automotive communication networks\",\"authors\":\"Eric A. Lindholm, E. Warych, Daniel Whelan\",\"doi\":\"10.1117/12.596915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand for new safety, sensor, control, information and entertainment technologies in automobiles is stretching the data rate limits of communication networks using conventional wiring and plastic-based fibers. Thus far, the switch to high-bandwidth glass optical fibers has been hindered by concerns about the fiber’s reliability. In this study, we present zero-stress aging data for glass optical fibers with different protective coatings exposed to environmental conditions relevant to the automotive industry.\",\"PeriodicalId\":362599,\"journal\":{\"name\":\"European Workshop on Photonics in the Automobile\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Workshop on Photonics in the Automobile\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.596915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Photonics in the Automobile","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.596915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strength and reliability of silica optical fibers for automotive communication networks
Demand for new safety, sensor, control, information and entertainment technologies in automobiles is stretching the data rate limits of communication networks using conventional wiring and plastic-based fibers. Thus far, the switch to high-bandwidth glass optical fibers has been hindered by concerns about the fiber’s reliability. In this study, we present zero-stress aging data for glass optical fibers with different protective coatings exposed to environmental conditions relevant to the automotive industry.