模式识别特征对驾驶员认知分心检测的影响

M. Miyaji, H. Kawanaka, K. Oguri
{"title":"模式识别特征对驾驶员认知分心检测的影响","authors":"M. Miyaji, H. Kawanaka, K. Oguri","doi":"10.1109/ITSC.2010.5624966","DOIUrl":null,"url":null,"abstract":"Constituent technology of a driver monitor system using information of a driver's psychosomatic states is expected to create driver's states adaptive drive supporting system for the reduction of traffic accidents. In this study we identified a driver's distraction as one of major psychosomatic states which may result in a traffic accident by using Internet based survey on a questionnaire basis. Then we aimed at creating a methodology in use for detecting driver's cognitive distraction by means of using the AdaBoost which is capable of rapid and accurate classification. Furthermore we verified an effect of pattern recognition features such as interval between heart R-waves (hereafter, heart rate RRI) from an ECG (electrocardiogram), pupil diameter, and, gaze angle and head rotation angle.","PeriodicalId":176645,"journal":{"name":"13th International IEEE Conference on Intelligent Transportation Systems","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Effect of pattern recognition features on detection for driver's cognitive distraction\",\"authors\":\"M. Miyaji, H. Kawanaka, K. Oguri\",\"doi\":\"10.1109/ITSC.2010.5624966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constituent technology of a driver monitor system using information of a driver's psychosomatic states is expected to create driver's states adaptive drive supporting system for the reduction of traffic accidents. In this study we identified a driver's distraction as one of major psychosomatic states which may result in a traffic accident by using Internet based survey on a questionnaire basis. Then we aimed at creating a methodology in use for detecting driver's cognitive distraction by means of using the AdaBoost which is capable of rapid and accurate classification. Furthermore we verified an effect of pattern recognition features such as interval between heart R-waves (hereafter, heart rate RRI) from an ECG (electrocardiogram), pupil diameter, and, gaze angle and head rotation angle.\",\"PeriodicalId\":176645,\"journal\":{\"name\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2010.5624966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th International IEEE Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2010.5624966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

利用驾驶员心身状态信息的驾驶员监控系统构成技术有望实现驾驶员状态自适应驾驶辅助系统,以减少交通事故的发生。在本研究中,我们通过基于互联网的问卷调查,确定了驾驶员分心是可能导致交通事故的主要身心状态之一。然后,我们的目标是通过使用AdaBoost创建一种用于检测驾驶员认知分心的方法,该方法能够快速准确地分类。此外,我们验证了模式识别特征的影响,如心电(心电图)中心脏r波之间的间隔(以下简称心率RRI)、瞳孔直径、凝视角度和头部旋转角度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of pattern recognition features on detection for driver's cognitive distraction
Constituent technology of a driver monitor system using information of a driver's psychosomatic states is expected to create driver's states adaptive drive supporting system for the reduction of traffic accidents. In this study we identified a driver's distraction as one of major psychosomatic states which may result in a traffic accident by using Internet based survey on a questionnaire basis. Then we aimed at creating a methodology in use for detecting driver's cognitive distraction by means of using the AdaBoost which is capable of rapid and accurate classification. Furthermore we verified an effect of pattern recognition features such as interval between heart R-waves (hereafter, heart rate RRI) from an ECG (electrocardiogram), pupil diameter, and, gaze angle and head rotation angle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信