图上一元量词的交替层次是无限的

O. Matz, W. Thomas
{"title":"图上一元量词的交替层次是无限的","authors":"O. Matz, W. Thomas","doi":"10.1109/LICS.1997.614951","DOIUrl":null,"url":null,"abstract":"We show that in monadic second-order logic over finite directed graphs, a strict hierarchy of expressiveness is obtained by increasing the (second-order) quantifier alternation depth of formulas. thus, the \"monadic analogue\" of the polynomial hierarchy is found to be strict, which solves a problem of Fagin. The proof is based on automata theoretic concepts (rather than Ehrenfeucht-Fraisse games) and starts from a restricted class of graph-like structures, namely finite two-dimensional grids. We investigate monadic second-order definable sets of grids where the width of grids is a function of the height. In this context, the infiniteness of the quantifier alternation hierarchy is witnessed by n-fold exponential functions for increasing n. It is notable that these witness sets of the monadic hierarchy all belong to the complexity class NP, the first level of the polynomial hierarchy.","PeriodicalId":272903,"journal":{"name":"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"The monadic quantifier alternation hierarchy over graphs is infinite\",\"authors\":\"O. Matz, W. Thomas\",\"doi\":\"10.1109/LICS.1997.614951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that in monadic second-order logic over finite directed graphs, a strict hierarchy of expressiveness is obtained by increasing the (second-order) quantifier alternation depth of formulas. thus, the \\\"monadic analogue\\\" of the polynomial hierarchy is found to be strict, which solves a problem of Fagin. The proof is based on automata theoretic concepts (rather than Ehrenfeucht-Fraisse games) and starts from a restricted class of graph-like structures, namely finite two-dimensional grids. We investigate monadic second-order definable sets of grids where the width of grids is a function of the height. In this context, the infiniteness of the quantifier alternation hierarchy is witnessed by n-fold exponential functions for increasing n. It is notable that these witness sets of the monadic hierarchy all belong to the complexity class NP, the first level of the polynomial hierarchy.\",\"PeriodicalId\":272903,\"journal\":{\"name\":\"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1997.614951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1997.614951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

我们证明了在有限有向图上的一元二阶逻辑中,通过增加公式的(二阶)量词交替深度,得到了一个严格的表达层次。从而发现多项式层次的“一元类似”是严格的,从而解决了费金问题。该证明基于自动机理论概念(而不是Ehrenfeucht-Fraisse游戏),并从一类受限的类图结构(即有限的二维网格)开始。我们研究一元二阶可定义网格集,其中网格的宽度是高度的函数。在这种情况下,量词交替层次的无限性由n倍指数函数来证明。值得注意的是,这些一元层次的见证集都属于复杂度类NP,即多项式层次的第一级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The monadic quantifier alternation hierarchy over graphs is infinite
We show that in monadic second-order logic over finite directed graphs, a strict hierarchy of expressiveness is obtained by increasing the (second-order) quantifier alternation depth of formulas. thus, the "monadic analogue" of the polynomial hierarchy is found to be strict, which solves a problem of Fagin. The proof is based on automata theoretic concepts (rather than Ehrenfeucht-Fraisse games) and starts from a restricted class of graph-like structures, namely finite two-dimensional grids. We investigate monadic second-order definable sets of grids where the width of grids is a function of the height. In this context, the infiniteness of the quantifier alternation hierarchy is witnessed by n-fold exponential functions for increasing n. It is notable that these witness sets of the monadic hierarchy all belong to the complexity class NP, the first level of the polynomial hierarchy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信