无平方词的临界分解

T. Harju
{"title":"无平方词的临界分解","authors":"T. Harju","doi":"10.1051/ita/2022003","DOIUrl":null,"url":null,"abstract":"A position p in a word w is critical if the minimal local period at p is equal to the global period of w. According to the Critical Factorisation Theorem all words of length at least two have a critical point. We study the number η(w) of critical points of square-free ternary words w, i.e., words over a three letter alphabet. We show that the sufficiently long square-free words w satisfy η(w) ≤|w|− 5 where |w| denotes the length of w. Moreover, the bound |w|− 5 is reached by infinitely many words. On the other hand, every square-free word w has at least |w|∕4 critical points, and there is a sequence of these words closing to this bound.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Critical factorisation in square-free words\",\"authors\":\"T. Harju\",\"doi\":\"10.1051/ita/2022003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A position p in a word w is critical if the minimal local period at p is equal to the global period of w. According to the Critical Factorisation Theorem all words of length at least two have a critical point. We study the number η(w) of critical points of square-free ternary words w, i.e., words over a three letter alphabet. We show that the sufficiently long square-free words w satisfy η(w) ≤|w|− 5 where |w| denotes the length of w. Moreover, the bound |w|− 5 is reached by infinitely many words. On the other hand, every square-free word w has at least |w|∕4 critical points, and there is a sequence of these words closing to this bound.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2022003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2022003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如果p处的最小局部周期等于w的全局周期,则单词w中的位置p是临界的。根据临界分解定理,长度至少为2的所有单词都有一个临界点。我们研究了无平方三元词w的临界点数η(w),即超过三个字母的词。我们证明了足够长的无平方词w满足η(w)≤|w|−5,其中|w|表示w的长度。并且,有无穷多个词可以达到限定的|w|−5。另一方面,每个无平方词w至少有|00w |∕4个临界点,并且这些词有一个序列接近这个界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical factorisation in square-free words
A position p in a word w is critical if the minimal local period at p is equal to the global period of w. According to the Critical Factorisation Theorem all words of length at least two have a critical point. We study the number η(w) of critical points of square-free ternary words w, i.e., words over a three letter alphabet. We show that the sufficiently long square-free words w satisfy η(w) ≤|w|− 5 where |w| denotes the length of w. Moreover, the bound |w|− 5 is reached by infinitely many words. On the other hand, every square-free word w has at least |w|∕4 critical points, and there is a sequence of these words closing to this bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信