{"title":"无平方词的临界分解","authors":"T. Harju","doi":"10.1051/ita/2022003","DOIUrl":null,"url":null,"abstract":"A position p in a word w is critical if the minimal local period at p is equal to the global period of w. According to the Critical Factorisation Theorem all words of length at least two have a critical point. We study the number η(w) of critical points of square-free ternary words w, i.e., words over a three letter alphabet. We show that the sufficiently long square-free words w satisfy η(w) ≤|w|− 5 where |w| denotes the length of w. Moreover, the bound |w|− 5 is reached by infinitely many words. On the other hand, every square-free word w has at least |w|∕4 critical points, and there is a sequence of these words closing to this bound.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Critical factorisation in square-free words\",\"authors\":\"T. Harju\",\"doi\":\"10.1051/ita/2022003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A position p in a word w is critical if the minimal local period at p is equal to the global period of w. According to the Critical Factorisation Theorem all words of length at least two have a critical point. We study the number η(w) of critical points of square-free ternary words w, i.e., words over a three letter alphabet. We show that the sufficiently long square-free words w satisfy η(w) ≤|w|− 5 where |w| denotes the length of w. Moreover, the bound |w|− 5 is reached by infinitely many words. On the other hand, every square-free word w has at least |w|∕4 critical points, and there is a sequence of these words closing to this bound.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2022003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2022003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A position p in a word w is critical if the minimal local period at p is equal to the global period of w. According to the Critical Factorisation Theorem all words of length at least two have a critical point. We study the number η(w) of critical points of square-free ternary words w, i.e., words over a three letter alphabet. We show that the sufficiently long square-free words w satisfy η(w) ≤|w|− 5 where |w| denotes the length of w. Moreover, the bound |w|− 5 is reached by infinitely many words. On the other hand, every square-free word w has at least |w|∕4 critical points, and there is a sequence of these words closing to this bound.