在存在参数不确定性的情况下,限制溯及性的影响

Thomas P. Prescott, A. György
{"title":"在存在参数不确定性的情况下,限制溯及性的影响","authors":"Thomas P. Prescott, A. György","doi":"10.1109/ACC.2015.7171812","DOIUrl":null,"url":null,"abstract":"As the number of synthetic genetic modules grows, the issue of reliably predicting their behavior upon interconnection becomes more pressing. The trajectory of an upstream module changes once connected to a downstream module due to retroactivity. Here, we employ dissipativity analysis to provide an upper bound on the L2 measure of this difference. To obtain this upper bound we formulate a Sum of Squares (SOS) optimization problem which we then solve using semi-definite programming. One particular strength of this approach is the ability to successfully handle parameter uncertainties while providing guaranteed upper bounds on the difference between the trajectories. We illustrate how to apply our method in the case of the most recurrent motif in gene networks.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bounding the effect of retroactivity in the presence of parameter uncertainty\",\"authors\":\"Thomas P. Prescott, A. György\",\"doi\":\"10.1109/ACC.2015.7171812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the number of synthetic genetic modules grows, the issue of reliably predicting their behavior upon interconnection becomes more pressing. The trajectory of an upstream module changes once connected to a downstream module due to retroactivity. Here, we employ dissipativity analysis to provide an upper bound on the L2 measure of this difference. To obtain this upper bound we formulate a Sum of Squares (SOS) optimization problem which we then solve using semi-definite programming. One particular strength of this approach is the ability to successfully handle parameter uncertainties while providing guaranteed upper bounds on the difference between the trajectories. We illustrate how to apply our method in the case of the most recurrent motif in gene networks.\",\"PeriodicalId\":223665,\"journal\":{\"name\":\"2015 American Control Conference (ACC)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2015.7171812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7171812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着合成遗传模块数量的增长,可靠地预测它们在互连时的行为变得更加紧迫。由于追溯性,上游模块一旦连接到下游模块,其轨迹就会发生变化。在这里,我们采用耗散性分析来提供这种差异的L2度量的上界。为了得到这个上界,我们提出了一个平方和优化问题,然后用半定规划求解。这种方法的一个特别优点是能够成功地处理参数不确定性,同时保证轨迹之间差异的上界。我们说明了如何在基因网络中最常见的基序的情况下应用我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding the effect of retroactivity in the presence of parameter uncertainty
As the number of synthetic genetic modules grows, the issue of reliably predicting their behavior upon interconnection becomes more pressing. The trajectory of an upstream module changes once connected to a downstream module due to retroactivity. Here, we employ dissipativity analysis to provide an upper bound on the L2 measure of this difference. To obtain this upper bound we formulate a Sum of Squares (SOS) optimization problem which we then solve using semi-definite programming. One particular strength of this approach is the ability to successfully handle parameter uncertainties while providing guaranteed upper bounds on the difference between the trajectories. We illustrate how to apply our method in the case of the most recurrent motif in gene networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信