传感器阵列故障传感器的鲁棒自主检测

Siddhartha Ghosh, A. Freitas, I. Marshall
{"title":"传感器阵列故障传感器的鲁棒自主检测","authors":"Siddhartha Ghosh, A. Freitas, I. Marshall","doi":"10.1109/CAMSAP.2007.4498008","DOIUrl":null,"url":null,"abstract":"We propose a technique for the autonomous detection of the faulty sensors of a sensor array that are aberrant relative to the rest. Our approach is based on probabilistically modeling the distribution of the differences between the sensor measurements as a mixture of Gaussians and then classifying further instances of the sensor differences using a naive Bayes classifier. We demonstrate the applicability of this technique to the diagnosis of the sensors/photosites of a CCD array, using sensor array data comprising of randomly selected images. Our technique performs well for different combinations of parameter settings at the detection of the faulty photosites of a CCD array.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Autonomous Detection of the Faulty Sensors of a Sensor Array\",\"authors\":\"Siddhartha Ghosh, A. Freitas, I. Marshall\",\"doi\":\"10.1109/CAMSAP.2007.4498008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a technique for the autonomous detection of the faulty sensors of a sensor array that are aberrant relative to the rest. Our approach is based on probabilistically modeling the distribution of the differences between the sensor measurements as a mixture of Gaussians and then classifying further instances of the sensor differences using a naive Bayes classifier. We demonstrate the applicability of this technique to the diagnosis of the sensors/photosites of a CCD array, using sensor array data comprising of randomly selected images. Our technique performs well for different combinations of parameter settings at the detection of the faulty photosites of a CCD array.\",\"PeriodicalId\":220687,\"journal\":{\"name\":\"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2007.4498008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4498008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种自动检测传感器阵列中相对于其他传感器异常的故障传感器的技术。我们的方法是基于对传感器测量值之间的差异分布进行概率建模,作为高斯分布的混合物,然后使用朴素贝叶斯分类器对传感器差异的进一步实例进行分类。我们证明了这种技术的适用性,以诊断的传感器/ CCD阵列的照片,使用传感器阵列数据包括随机选择的图像。我们的技术在检测CCD阵列的故障点时,对于不同的参数设置组合表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Autonomous Detection of the Faulty Sensors of a Sensor Array
We propose a technique for the autonomous detection of the faulty sensors of a sensor array that are aberrant relative to the rest. Our approach is based on probabilistically modeling the distribution of the differences between the sensor measurements as a mixture of Gaussians and then classifying further instances of the sensor differences using a naive Bayes classifier. We demonstrate the applicability of this technique to the diagnosis of the sensors/photosites of a CCD array, using sensor array data comprising of randomly selected images. Our technique performs well for different combinations of parameter settings at the detection of the faulty photosites of a CCD array.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信