M. Bavay, J. Mervini, R. Spielman, G. Avrillaud, M. Delchambre, J. Guerre, F. Bayol, F. Cubaynes
{"title":"用于磁驱动等熵压缩实验的紧凑型脉冲发生器","authors":"M. Bavay, J. Mervini, R. Spielman, G. Avrillaud, M. Delchambre, J. Guerre, F. Bayol, F. Cubaynes","doi":"10.1109/MEGAGUSS.2006.4530712","DOIUrl":null,"url":null,"abstract":"The use of magnetic fields to isentropically compress materials for equation-of-state studies has been first demonstrated on the Z machine at SNL [1]. Sharing similarities with the GEPI pulser [2], a compact pulser has been designed and built, focusing on Isentropic Compression Experiments. In order to achieve high compacity and fast turn around, the design is built around a solid dielectric transmission line to couple current from eight low-inductance capacitors that are switched with ultra-low-inductance multi-channel gas switches operating in dry air at atmospheric pressure. A peaking stage made of 72 capacitors enhanced by a low inductance, multi-channel sharpening switch brings the fundamental rise time of the pulser down to 350 ns (10-90%). A set of inductances in parallel with the sharpening switch as well as using various gases into this switch allow us to modify the current wave shape. The pulser delivers a peak current of 4 MA at a charge voltage of 80 kV on a short circuit. The rise time can be lengthened to around 650 ns for a current of 4.2 MA. The use of post-holes convolutes in a solid dielectric insulation design makes that pulser unique as well as its compact size, ease of use and ease of access to the load.","PeriodicalId":338246,"journal":{"name":"2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Compact Pulser for Magnetically Driven Isentropic-Compression Experiments\",\"authors\":\"M. Bavay, J. Mervini, R. Spielman, G. Avrillaud, M. Delchambre, J. Guerre, F. Bayol, F. Cubaynes\",\"doi\":\"10.1109/MEGAGUSS.2006.4530712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of magnetic fields to isentropically compress materials for equation-of-state studies has been first demonstrated on the Z machine at SNL [1]. Sharing similarities with the GEPI pulser [2], a compact pulser has been designed and built, focusing on Isentropic Compression Experiments. In order to achieve high compacity and fast turn around, the design is built around a solid dielectric transmission line to couple current from eight low-inductance capacitors that are switched with ultra-low-inductance multi-channel gas switches operating in dry air at atmospheric pressure. A peaking stage made of 72 capacitors enhanced by a low inductance, multi-channel sharpening switch brings the fundamental rise time of the pulser down to 350 ns (10-90%). A set of inductances in parallel with the sharpening switch as well as using various gases into this switch allow us to modify the current wave shape. The pulser delivers a peak current of 4 MA at a charge voltage of 80 kV on a short circuit. The rise time can be lengthened to around 650 ns for a current of 4.2 MA. The use of post-holes convolutes in a solid dielectric insulation design makes that pulser unique as well as its compact size, ease of use and ease of access to the load.\",\"PeriodicalId\":338246,\"journal\":{\"name\":\"2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEGAGUSS.2006.4530712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEGAGUSS.2006.4530712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Compact Pulser for Magnetically Driven Isentropic-Compression Experiments
The use of magnetic fields to isentropically compress materials for equation-of-state studies has been first demonstrated on the Z machine at SNL [1]. Sharing similarities with the GEPI pulser [2], a compact pulser has been designed and built, focusing on Isentropic Compression Experiments. In order to achieve high compacity and fast turn around, the design is built around a solid dielectric transmission line to couple current from eight low-inductance capacitors that are switched with ultra-low-inductance multi-channel gas switches operating in dry air at atmospheric pressure. A peaking stage made of 72 capacitors enhanced by a low inductance, multi-channel sharpening switch brings the fundamental rise time of the pulser down to 350 ns (10-90%). A set of inductances in parallel with the sharpening switch as well as using various gases into this switch allow us to modify the current wave shape. The pulser delivers a peak current of 4 MA at a charge voltage of 80 kV on a short circuit. The rise time can be lengthened to around 650 ns for a current of 4.2 MA. The use of post-holes convolutes in a solid dielectric insulation design makes that pulser unique as well as its compact size, ease of use and ease of access to the load.