基于对立学习的多策略花授粉算法

Cácio L. N. A. Bezerra, Fábio G. B. C. Costa, Lucas V. Bazante, P. Carvalho, Fábio A. P. Paiva
{"title":"基于对立学习的多策略花授粉算法","authors":"Cácio L. N. A. Bezerra, Fábio G. B. C. Costa, Lucas V. Bazante, P. Carvalho, Fábio A. P. Paiva","doi":"10.5753/ENIAC.2018.4453","DOIUrl":null,"url":null,"abstract":"Flower Pollination Algorithm (FPA) has been widely used to solve optimization problems. However, it faces the problem of stagnation in local optimum. Several approaches have been proposed to deal with this problem. To improve the performance of the FPA, this paper presents a new variant that combines FPA and two variants of the Opposition Based Learning (OBL), such as Quasi OBL (QOBL) and Elite OBL (EOBL). To evaluate this proposal, 10 benchmark functions were used. In addition, the proposed algorithm was compared with original FPA and three variants such as FA–EOBL, SBFPA and DE–FPA. The proposal presented significant results.","PeriodicalId":152292,"journal":{"name":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flower Pollination Algorithm Combined with Multiple Strategies of Opposition–Based Learning\",\"authors\":\"Cácio L. N. A. Bezerra, Fábio G. B. C. Costa, Lucas V. Bazante, P. Carvalho, Fábio A. P. Paiva\",\"doi\":\"10.5753/ENIAC.2018.4453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flower Pollination Algorithm (FPA) has been widely used to solve optimization problems. However, it faces the problem of stagnation in local optimum. Several approaches have been proposed to deal with this problem. To improve the performance of the FPA, this paper presents a new variant that combines FPA and two variants of the Opposition Based Learning (OBL), such as Quasi OBL (QOBL) and Elite OBL (EOBL). To evaluate this proposal, 10 benchmark functions were used. In addition, the proposed algorithm was compared with original FPA and three variants such as FA–EOBL, SBFPA and DE–FPA. The proposal presented significant results.\",\"PeriodicalId\":152292,\"journal\":{\"name\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/ENIAC.2018.4453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ENIAC.2018.4453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

花授粉算法(FPA)已被广泛用于解决优化问题。然而,它面临着局部最优停滞的问题。已经提出了几种方法来处理这个问题。为了提高FPA的性能,本文提出了一种新的变体,该变体将FPA与基于对立的学习(OBL)的两个变体如准OBL (QOBL)和精英OBL (EOBL)相结合。为了评估这个建议,我们使用了10个基准函数。此外,将该算法与原始FPA以及FA-EOBL、SBFPA和DE-FPA三种变体进行了比较。这项建议产生了显著的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flower Pollination Algorithm Combined with Multiple Strategies of Opposition–Based Learning
Flower Pollination Algorithm (FPA) has been widely used to solve optimization problems. However, it faces the problem of stagnation in local optimum. Several approaches have been proposed to deal with this problem. To improve the performance of the FPA, this paper presents a new variant that combines FPA and two variants of the Opposition Based Learning (OBL), such as Quasi OBL (QOBL) and Elite OBL (EOBL). To evaluate this proposal, 10 benchmark functions were used. In addition, the proposed algorithm was compared with original FPA and three variants such as FA–EOBL, SBFPA and DE–FPA. The proposal presented significant results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信