超快分布反馈染料激光器

N. Khan
{"title":"超快分布反馈染料激光器","authors":"N. Khan","doi":"10.1117/12.380950","DOIUrl":null,"url":null,"abstract":"A distributed feedback dye laser (DFDL) was experimentally studied to determine the utmost lower limit on ultrafast pulse generation. The ultimate aim was to determine its suitability as a cheaper high peak power laser source. The dye cell was excited by the second harmonic of a laboratory built cavity dumped passively q switched and modelocked Nd:YAG Laser to induce temperature phase grating in dye solution. Different features studied include threshold conditions, pulse shortening, by reducing cavity length, polymerization limitations, simultaneous induction of multiple superimposed gratings, line narrowing, polarization, temporal and spectral characteristics. The pump polarization affect on dynamic gratings and threshold conditions indicated the number of lasing lines (maximum nine) or intensity of a single line depends upon the state of pump polarization (SOP). Various types of tuning methods such as Bragg index, refractive index, half angle and state of pump polarization were tested for improved divergence, bandwidth, line-width and wider spectral ranges. The combined effect of coherence length and SOP of excitation laser on emission of multiple lines was studied without using external gratings. The results of this critical and contemporary work on DFDL is in agreement with most of the published results and opens a new era for their potential suitability in optical communication, sensing and photonic devices.","PeriodicalId":375593,"journal":{"name":"Advanced High-Power Lasers and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast distributed feedback dye lasers\",\"authors\":\"N. Khan\",\"doi\":\"10.1117/12.380950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A distributed feedback dye laser (DFDL) was experimentally studied to determine the utmost lower limit on ultrafast pulse generation. The ultimate aim was to determine its suitability as a cheaper high peak power laser source. The dye cell was excited by the second harmonic of a laboratory built cavity dumped passively q switched and modelocked Nd:YAG Laser to induce temperature phase grating in dye solution. Different features studied include threshold conditions, pulse shortening, by reducing cavity length, polymerization limitations, simultaneous induction of multiple superimposed gratings, line narrowing, polarization, temporal and spectral characteristics. The pump polarization affect on dynamic gratings and threshold conditions indicated the number of lasing lines (maximum nine) or intensity of a single line depends upon the state of pump polarization (SOP). Various types of tuning methods such as Bragg index, refractive index, half angle and state of pump polarization were tested for improved divergence, bandwidth, line-width and wider spectral ranges. The combined effect of coherence length and SOP of excitation laser on emission of multiple lines was studied without using external gratings. The results of this critical and contemporary work on DFDL is in agreement with most of the published results and opens a new era for their potential suitability in optical communication, sensing and photonic devices.\",\"PeriodicalId\":375593,\"journal\":{\"name\":\"Advanced High-Power Lasers and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced High-Power Lasers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.380950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced High-Power Lasers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.380950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对分布式反馈染料激光器(DFDL)进行了实验研究,以确定其产生超快脉冲的最大下限。最终目的是确定其适用性作为一个更便宜的峰值功率激光源。利用实验室自制的腔体倾倒被动调q锁模Nd:YAG激光器的二次谐波激发染料电池,在染料溶液中产生温度相位光栅。研究的不同特征包括阈值条件、脉冲缩短、通过减小腔长、聚合限制、同时感应多个叠加光栅、线窄、极化、时间和光谱特征。泵浦偏振对动态光栅和阈值条件的影响表明,激光线的数量(最多9条)或单线的强度取决于泵浦偏振状态(SOP)。通过对Bragg指数、折射率、半角和泵浦偏振状态等多种调谐方法的测试,提高了发散度、带宽、线宽和更宽的光谱范围。在不使用外光栅的情况下,研究了激发激光相干长度和SOP对多线发射的联合影响。这项关于DFDL的批判性和当代工作的结果与大多数已发表的结果一致,并为它们在光通信,传感和光子器件中的潜在适用性开辟了一个新时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrafast distributed feedback dye lasers
A distributed feedback dye laser (DFDL) was experimentally studied to determine the utmost lower limit on ultrafast pulse generation. The ultimate aim was to determine its suitability as a cheaper high peak power laser source. The dye cell was excited by the second harmonic of a laboratory built cavity dumped passively q switched and modelocked Nd:YAG Laser to induce temperature phase grating in dye solution. Different features studied include threshold conditions, pulse shortening, by reducing cavity length, polymerization limitations, simultaneous induction of multiple superimposed gratings, line narrowing, polarization, temporal and spectral characteristics. The pump polarization affect on dynamic gratings and threshold conditions indicated the number of lasing lines (maximum nine) or intensity of a single line depends upon the state of pump polarization (SOP). Various types of tuning methods such as Bragg index, refractive index, half angle and state of pump polarization were tested for improved divergence, bandwidth, line-width and wider spectral ranges. The combined effect of coherence length and SOP of excitation laser on emission of multiple lines was studied without using external gratings. The results of this critical and contemporary work on DFDL is in agreement with most of the published results and opens a new era for their potential suitability in optical communication, sensing and photonic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信